[BZOJ1010]玩具装箱:DP决策单调性

2024-01-10 19:18

本文主要是介绍[BZOJ1010]玩具装箱:DP决策单调性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目请点击这里

首先可以得到方程:

f[i]=max{f[j]+(sum[i]-sum[j]+i-j-1-L)^2}

显而易见该方程具有单调性,因此可以使用决策单调性优化,维护一个下凸壳,每次将当前队首决策取出直至当前决策为最优,然后将当前点加入队尾,若有斜率小于当前点的则先取出后加入。

/*
User:Small
Language:C++
Problem No.:1010
*/
#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
#define pii pair<int,int>
#define mp make_pair
using namespace std;
const int M=50005;
int n,l,a[M],c,q[M];
ll sum[M],f[M];
double slop(int j,int k){return (f[k]-f[j]+(sum[k]+c)*(sum[k]+c)-(sum[j]+c)*(sum[j]+c))/(2.0*(sum[k]-sum[j]));
}
void solve(){int l,r;l=1;r=0;q[++r]=0;for(int i=1;i<=n;i++){while(l<r&&slop(q[l],q[l+1])<=sum[i]) l++;int t=q[l];f[i]=f[t]+(sum[i]-sum[t]-c)*(sum[i]-sum[t]-c);while(l<r&&slop(q[r],i)<slop(q[r-1],q[r])) r--;q[++r]=i;}
}
int main(){freopen("data.in","r",stdin);//ios::sync_with_stdio(false);cin>>n>>l;c=l+1;for(int i=1;i<=n;i++){cin>>a[i];sum[i]=sum[i-1]+a[i]+1;}solve();cout<<f[n]<<endl;return 0;
}

这篇关于[BZOJ1010]玩具装箱:DP决策单调性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591805

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int