多尺度视网膜增强算法(MSRCR)

2024-01-10 18:38

本文主要是介绍多尺度视网膜增强算法(MSRCR),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MSRCR(multi-scale retinex with color restoration)

头文件

/** Copyright (c) 2006, Douglas Gray (dgray@soe.ucsc.edu, dr.de3ug@gmail.com)* All rights reserved.** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions are met:*     * Redistributions of source code must retain the above copyright*       notice, this list of conditions and the following disclaimer.*     * Redistributions in binary form must reproduce the above copyright*       notice, this list of conditions and the following disclaimer in the*       documentation and/or other materials provided with the distribution.*     * Neither the name of the <organization> nor the*       names of its contributors may be used to endorse or promote products*       derived from this software without specific prior written permission.** THIS SOFTWARE IS PROVIDED BY Douglas Gray ``AS IS'' AND ANY* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.*/
#pragma once#include "cv.h"extern double* CreateKernel(double sigma);
extern int* CreateFastKernel(double sigma);extern void FilterGaussian(IplImage* img, double sigma);
extern void FastFilter(IplImage *img, double sigma);extern void Retinex
(IplImage *img, double sigma, int gain = 128, int offset = 128);extern void MultiScaleRetinex
(IplImage *img, int scales, double *weights, double *sigmas, int gain = 128, int offset = 128);extern void MultiScaleRetinexCR
(IplImage *img, int scales, double *weights, double *sigmas, int gain = 128, int offset = 128,double restoration_factor = 6, double color_gain = 2);

实现文件

/** Copyright (c) 2006, Douglas Gray (dgray@soe.ucsc.edu, dr.de3ug@gmail.com)* All rights reserved.** Redistribution and use in source and binary forms, with or without* modification, are permitted provided that the following conditions are met:*     * Redistributions of source code must retain the above copyright*       notice, this list of conditions and the following disclaimer.*     * Redistributions in binary form must reproduce the above copyright*       notice, this list of conditions and the following disclaimer in the*       documentation and/or other materials provided with the distribution.*     * Neither the name of the <organization> nor the*       names of its contributors may be used to endorse or promote products*       derived from this software without specific prior written permission.** THIS SOFTWARE IS PROVIDED BY Douglas Gray ``AS IS'' AND ANY* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE* DISCLAIMED. IN NO EVENT SHALL <copyright holder> BE LIABLE FOR ANY* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.*/
#include "retinex.h"
#include<cv.h>
#include <opencv2/opencv.hpp>
#include<omp.h>
#include <math.h>using namespace cv;
using namespace std;
//#define USE_EXACT_SIGMA#define pc(image, x, y, c) image->imageData[(image->widthStep * y) + (image->nChannels * x) + c]#define INT_PREC 1024.0
#define INT_PREC_BITS 10inline double int2double(int x) { return (double)x / INT_PREC; }
inline int double2int(double x) { return (int)(x * INT_PREC + 0.5); }inline int int2smallint(int x) { return (x >> INT_PREC_BITS); }
inline int int2bigint(int x) { return (x << INT_PREC_BITS); }//
// CreateKernel
//
// Summary:
// Creates a normalized 1 dimensional gaussian kernel.
//
// Arguments:
// sigma - the standard deviation of the gaussian kernel.
//
// Returns:
// double* - an array of values of length ((6*sigma)/2) * 2 + 1.
//
// Note:
// Caller is responsable for deleting the kernel.
//
double*
CreateKernel(double sigma)
{int i, x, filter_size;double* filter;double sum;// Reject unreasonable demandsif ( sigma > 200 ) sigma = 200;// get needed filter size (enforce oddness)filter_size = (int)floor(sigma*6) / 2;filter_size = filter_size * 2 + 1;// Allocate kernel spacefilter = new double[filter_size];// Calculate exponentialsum = 0;for (i = 0; i < filter_size; i++) {x = i - (filter_size / 2);filter[i] = exp( -(x*x) / (2*sigma*sigma) );sum += filter[i];}// Normalizefor (i = 0, x; i < filter_size; i++)filter[i] /= sum;return filter;
}//
// CreateFastKernel
//
// Summary:
// Creates a faster gaussian kernal using integers that
// approximate floating point (leftshifted by 8 bits)
//
// Arguments:
// sigma - the standard deviation of the gaussian kernel.
//
// Returns:
// int* - an array of values of length ((6*sigma)/2) * 2 + 1.
//
// Note:
// Caller is responsable for deleting the kernel.
//int*
CreateFastKernel(double sigma)
{double* fp_kernel;int* kernel;int i, filter_size;// Reject unreasonable demandsif ( sigma > 200 ) sigma = 200;// get needed filter size (enforce oddness)filter_size = (int)floor(sigma*6) / 2;filter_size = filter_size * 2 + 1;// Allocate kernel spacekernel = new int[filter_size];fp_kernel = CreateKernel(sigma);for (i = 0; i < filter_size; i++)kernel[i] = double2int(fp_kernel[i]);delete fp_kernel;return kernel;
}//
// FilterGaussian
//
// Summary:
// Performs a gaussian convolution for a value of sigma that is equal
// in both directions.
//
// Arguments:
// img - the image to be filtered in place.
// sigma - the standard deviation of the gaussian kernel to use.
//
void
FilterGaussian(IplImage* img, double sigma)
{int i, j, k, source, filter_size;int* kernel;IplImage* temp;int v1, v2, v3;// Reject unreasonable demandsif ( sigma > 200 ) sigma = 200;// get needed filter size (enforce oddness)filter_size = (int)floor(sigma*6) / 2;filter_size = filter_size * 2 + 1;kernel = CreateFastKernel(sigma);temp = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);// filter x axisfor (j = 0; j < temp->height; j++)for (i = 0; i < temp->width; i++) {// inner loop has been unrolledv1 = v2 = v3 = 0;for (k = 0; k < filter_size; k++) {source = i + filter_size / 2 - k;if (source < 0) source *= -1;if (source > img->width - 1) source = 2*(img->width - 1) - source;v1 += kernel[k] * (unsigned char)pc(img, source, j, 0);if (img->nChannels == 1) continue;v2 += kernel[k] * (unsigned char)pc(img, source, j, 1);v3 += kernel[k] * (unsigned char)pc(img, source, j, 2);}// set value and move onpc(temp, i, j, 0) = (char)int2smallint(v1);if (img->nChannels == 1) continue;pc(temp, i, j, 1) = (char)int2smallint(v2);pc(temp, i, j, 2) = (char)int2smallint(v3);}// filter y axisfor (j = 0; j < img->height; j++)for (i = 0; i < img->width; i++) {v1 = v2 = v3 = 0;for (k = 0; k < filter_size; k++) {source = j + filter_size / 2 - k;if (source < 0) source *= -1;if (source > temp->height - 1) source = 2*(temp->height - 1) - source;v1 += kernel[k] * (unsigned char)pc(temp, i, source, 0);if (img->nChannels == 1) continue;v2 += kernel[k] * (unsigned char)pc(temp, i, source, 1);v3 += kernel[k] * (unsigned char)pc(temp, i, source, 2);}// set value and move onpc(img, i, j, 0) = (char)int2smallint(v1);if (img->nChannels == 1) continue;pc(img, i, j, 1) = (char)int2smallint(v2);pc(img, i, j, 2) = (char)int2smallint(v3);}cvReleaseImage( &temp );delete kernel;}//
// FastFilter
//
// Summary:
// Performs gaussian convolution of any size sigma very fast by using
// both image pyramids and seperable filters.  Recursion is used.
//
// Arguments:
// img - an IplImage to be filtered in place.
//
void
FastFilter(IplImage *img, double sigma)
{int filter_size;// Reject unreasonable demandsif ( sigma > 200 ) sigma = 200;// get needed filter size (enforce oddness)filter_size = (int)floor(sigma*6) / 2;filter_size = filter_size * 2 + 1;// If 3 sigma is less than a pixel, why bother (ie sigma < 2/3)if(filter_size < 3) return;// Filter, or downsample and recurseif (filter_size < 10) {#ifdef USE_EXACT_SIGMAFilterGaussian(img, sigma)
#elsecvSmooth( img, img, CV_GAUSSIAN, filter_size, filter_size );
#endif}else {if (img->width < 2 || img->height < 2) return;IplImage* sub_img = cvCreateImage(cvSize(img->width / 2, img->height / 2), img->depth, img->nChannels);cvPyrDown( img, sub_img );FastFilter( sub_img, sigma / 2.0 );cvResize( sub_img, img, CV_INTER_LINEAR );cvReleaseImage( &sub_img );}}//
// Retinex
//
// Summary:
// Basic retinex restoration.  The image and a filtered image are converted
// to the log domain and subtracted.
//
// Arguments:
// img - an IplImage to be enhanced in place.
// sigma - the standard deviation of the gaussian kernal used to filter.
// gain - the factor by which to scale the image back into visable range.
// offset - an offset similar to the gain.
//
void
Retinex(IplImage *img, double sigma, int gain, int offset)
{IplImage *A, *fA, *fB, *fC;// Initialize temp imagesfA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);// Compute log imagecvConvert( img, fA );cvLog( fA, fB );// Compute log of blured imageA = cvCloneImage( img );FastFilter( A, sigma );cvConvert( A, fA );cvLog( fA, fC );// Compute differencecvSub( fB, fC, fA );// RestorecvConvertScale( fA, img, gain, offset);// Release temp imagescvReleaseImage( &A );cvReleaseImage( &fA );cvReleaseImage( &fB );cvReleaseImage( &fC );}//
// MultiScaleRetinex
//
// Summary:
// Multiscale retinex restoration.  The image and a set of filtered images are
// converted to the log domain and subtracted from the original with some set
// of weights. Typicaly called with three equaly weighted scales of fine,
// medium and wide standard deviations.
//
// Arguments:
// img - an IplImage to be enhanced in place.
// sigma - the standard deviation of the gaussian kernal used to filter.
// gain - the factor by which to scale the image back into visable range.
// offset - an offset similar to the gain.
//
void
MultiScaleRetinex(IplImage *img, int scales, double *weights, double *sigmas, int gain, int offset)
{int i;double weight;IplImage *A, *fA, *fB, *fC;// Initialize temp imagesfA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);// Compute log imagecvConvert( img, fA );cvLog( fA, fB );// Normalize according to given weightsfor (i = 0, weight = 0; i < scales; i++)weight += weights[i];if (weight != 1.0) cvScale( fB, fB, weight );// Filter at each scalefor (i = 0; i < scales; i++) {A = cvCloneImage( img );FastFilter( A, sigmas[i] );cvConvert( A, fA );cvLog( fA, fC );cvReleaseImage( &A );// Compute weighted differencecvScale( fC, fC, weights[i] );cvSub( fB, fC, fB );}// RestorecvConvertScale( fB, img, gain, offset);// Release temp imagescvReleaseImage( &fA );cvReleaseImage( &fB );cvReleaseImage( &fC );
}//
// MultiScaleRetinexCR
//
// Summary:
// Multiscale retinex restoration with color restoration.  The image and a set of
// filtered images are converted to the log domain and subtracted from the
// original with some set of weights. Typicaly called with three equaly weighted
// scales of fine, medium and wide standard deviations. A color restoration weight
// is then applied to each color channel.
//
// Arguments:
// img - an IplImage to be enhanced in place.
// sigma - the standard deviation of the gaussian kernal used to filter.
// gain - the factor by which to scale the image back into visable range.
// offset - an offset similar to the gain.
// restoration_factor - controls the non-linearaty of the color restoration.
// color_gain - controls the color restoration gain.
////extern void MultiScaleRetinexCR
//(IplImage *img, int scales, double *weights, double *sigmas, int gain = 128, int offset = 128,
// double restoration_factor = 6, double color_gain = 2);void MultiScaleRetinexCR(IplImage *img, int scales, double *weights, double *sigmas,int gain, int offset, double restoration_factor, double color_gain)
{int i;double weight;IplImage *A, *B, *C, *fA, *fB, *fC, *fsA, *fsB, *fsC, *fsD, *fsE, *fsF;// Initialize temp imagesfA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, img->nChannels);fsA = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);fsB = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);fsC = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);fsD = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);fsE = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);fsF = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_32F, 1);// Compute log imagecvConvert( img, fB );cvLog( fB, fA );=================get image value===================//   const int height=26;//const int width=30;//float imageValue[height][width][3];//for(int i=0;i<img->height;i++)	//{//	for(int j=0;j<img->width;j++)//	{//		imageValue[i][j][0]=cvGet2D(fA,i,j).val[0];//		imageValue[i][j][1]=cvGet2D(fA,i,j).val[1];//		imageValue[i][j][2]=cvGet2D(fA,i,j).val[2];//	}//}===========================end======================//=============================show image================//IplImage * test = cvCreateImage(cvSize(img->width, img->height), IPL_DEPTH_8U, img->nChannels);//cvConvert(fB,test);//cvNamedWindow("test",CV_WINDOW_AUTOSIZE);//cvShowImage("test",test);//cvWaitKey(0);==========================end============================// Normalize according to given weightsfor (i = 0, weight = 0; i < scales; i++)weight += weights[i];if (weight != 1.0) cvScale( fA, fA, weight );// Filter at each scale//for (i = 0; i < scales; i++) {A = cvCloneImage( img );FastFilter( A, sigmas[i] );cvConvert( A, fB );cvLog( fB, fC );cvReleaseImage( &A );// Compute weighted differencecvScale( fC, fC, weights[i] );cvSub( fA, fC, fA );}// Color restorationif (img->nChannels > 1) {A = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);B = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);C = cvCreateImage(cvSize(img->width, img->height), img->depth, 1);// Divide image into channels, convert and store sumcvCvtPixToPlane( img, A, B, C, NULL );cvConvert( A, fsA );cvConvert( B, fsB );cvConvert( C, fsC );cvReleaseImage( &A );cvReleaseImage( &B );cvReleaseImage( &C );// Sum componentscvAdd( fsA, fsB, fsD );cvAdd( fsD, fsC, fsD );// Normalize weightscvDiv( fsA, fsD, fsA, restoration_factor);cvDiv( fsB, fsD, fsB, restoration_factor);cvDiv( fsC, fsD, fsC, restoration_factor);cvConvertScale( fsA, fsA, 1, 1 );cvConvertScale( fsB, fsB, 1, 1 );cvConvertScale( fsC, fsC, 1, 1 );// Log weightscvLog( fsA, fsA );cvLog( fsB, fsB );cvLog( fsC, fsC );// Divide retinex image, weight accordingly and recombinecvCvtPixToPlane( fA, fsD, fsE, fsF, NULL );cvMul( fsD, fsA, fsD, color_gain);cvMul( fsE, fsB, fsE, color_gain );cvMul( fsF, fsC, fsF, color_gain );cvCvtPlaneToPix( fsD, fsE, fsF, NULL, fA );}// RestorecvConvertScale( fA, img, gain, offset);// Release temp imagescvReleaseImage( &fA );cvReleaseImage( &fB );cvReleaseImage( &fC );cvReleaseImage( &fsA );cvReleaseImage( &fsB );cvReleaseImage( &fsC );cvReleaseImage( &fsD );cvReleaseImage( &fsE );cvReleaseImage( &fsF );
}


主函数文件

//#include "stdafx.h"
#include<tchar.h>
#include <opencv2/opencv.hpp>
#include<iostream>
#include<sstream>
#include<string>
#include<cv.h>
#include<omp.h>
#include<concrt.h>#include"retinex.h"using namespace std;
using namespace cv;//============================================using for handle single image==================================================
int _tmain(int argc, _TCHAR* argv[])
{//get image const char* imagename = "girl.jpg";const char* imagesavename="girl_retinex.jpg";/*const char* imagename[6] = {"example12.jpg","girl01.jpg","people01.jpg","road01.jpg","tree01.jpg","clock.bmp"};const char* imagesavename[6] = {"example12_retinex.jpg","girl01_retinex.jpg","people01_retinex.jpg","road01_retinex.jpg","tree01_retinex.jpg","clock_retinex.bmp"};*///set retinex parametersint scales=3;double weight[3]={1.0/3.0,1.0/3.0,1.0/3.0};double sigmas[3]={1,50,100};                   //- the standard deviation of the gaussian kernal used to filter.int gain=50;                                   //- the factor by which to scale the image back into visable range.int offset=150;                                 //- an offset similar to the gain.double restoration_factor=100;                    // - controls the non-linearaty of the color restoration.double color_gain=1;                            // - controls the color restoration gain.char filePath[200]="image\\";char* imagePath=filePath;//get savefilenamechar num[5];char* sigmas_char[3];stringstream ss;for(int j=0;j<3;j++){						sigmas_char[j]=num;ss<<sigmas[j];ss>>sigmas_char[j];imagePath=strcat(imagePath,"sigma=");imagePath=strcat(imagePath,sigmas_char[j]);ss.clear();ss.str("");}//gainss.clear();ss.str("");char* gain_c=num;ss<<gain;ss>>gain_c;imagePath=strcat(imagePath,"_gain=");imagePath=strcat(imagePath,gain_c);//offsetss.clear();ss.str("");char* offset_char=num;ss<<offset;ss>>offset_char;imagePath=strcat(imagePath,"_offset=");imagePath=strcat(imagePath,offset_char);//restoration_factorss.clear();ss.str("");char* restoration_factor_char=num;ss<<restoration_factor;ss>>restoration_factor_char;imagePath=strcat(imagePath,"_factor=");imagePath=strcat(imagePath,restoration_factor_char);//color_gainss.clear();ss.str("");char* color_gain_char=num;ss<<color_gain;ss>>color_gain_char;imagePath=strcat(imagePath,"_color_gain=");imagePath=strcat(imagePath,color_gain_char);ss.clear();ss.str("");const char* imageSavePath=strcat(imagePath,imagesavename);IplImage* img=cvLoadImage(imagename,-1);//read the original channels number from imageMultiScaleRetinexCR(img,scales,weight,sigmas, gain, offset,restoration_factor,color_gain);cvSaveImage(imageSavePath,img);cvReleaseImage(&img);return 0;
}
============================================end=========================================================//==========================================using for handle video==============================
//int _tmain(int argc, _TCHAR* argv[])
//{ 
//	//get core num
//	int coreNum=omp_get_num_procs();
//
//	IplImage* pFrame=NULL;
//	CvCapture* pCapture=NULL;
//
//	cvNamedWindow("orginalVideo",1);
//	cvNamedWindow("retinexVideo",1);
//
//	cvMoveWindow("video",30,0);
//	cvMoveWindow("retinexVideo",360,0);
//
//	const char* videoName="sister.avi";
//	if(!(pCapture=cvCaptureFromFile(videoName)))
//	{
//		fprintf(stderr, "Can not open video file %s\n", videoName);
//		return -1;
//	}
//
//	/*CvVideoWriter *writer=0;
//	int isColor=1;
//	int fps=cvGetCaptureProperty(pCapture,CV_CAP_PROP_FPS);
//	int frameW=cvGetCaptureProperty(pCapture,CV_CAP_PROP_FRAME_HEIGHT);
//	int frameH=cvGetCaptureProperty(pCapture,CV_CAP_PROP_FRAME_WIDTH);
//	int numFrames = (int) cvGetCaptureProperty(pCapture, CV_CAP_PROP_FRAME_COUNT); 
//	writer=cvCreateVideoWriter("sister2retinex.avi",CV_FOURCC('M','J','P','G'),
//                           fps,cvSize(frameH,frameW),isColor);*/
//
//	//set paramaters
//	int scales=3;
//	double *weights,weight[3]={1.0/3.0,1.0/3.0,1.0/3.0};
//	weights=&weight[0];
//	double *sigmas, simg[3]={10,50,100};
//	sigmas=&simg[0];
//	
//	int count=0;
//
//	while((pFrame=cvQueryFrame(pCapture))!=NULL)
//	{
//		count++;
//		cvShowImage("orginalVideo",pFrame);
//		cvWaitKey(1);
//		MultiScaleRetinexCR(pFrame,scales,weights,sigmas, 128, 128,6,2);
//		/*cvWriteFrame(writer,pFrame);*/
//		cvShowImage("retinexVideo",pFrame);
//		//cout<<count<<"/"<<numFrames<<endl;
//	}
//	cvDestroyWindow("orginalVideo");
//	cvDestroyWindow("retinexVideo");
//
//	cvReleaseImage(&pFrame);
//	cvReleaseCapture(&pCapture);
//	//cvReleaseVideoWriter(&writer);
//	return 0;
//}
//=====================================end========================================================


====================================================================================

改进版 视网膜增强算法

====================================================================================

问题:

上面给出的源码,实现后,在颜色比较鲜艳时,或者颜色为黑色时,会产生变色(比如黑色会变为红色,红色会变为黄色)

产生原因:

RGB值比较大的值(接近255) 或比较低的(接近0 ) 经过上述算法处理后,某一通道的值会超过255或低于0,溢出。


改进:

改进版本可参考reference 3(网站包含论文与demo ,源码(Linux版本))



Reference:

1.原理相关1:http://www.cnblogs.com/Imageshop/archive/2013/04/17/3026881.html

2.源码部分2:http://blog.csdn.net/onezeros/article/details/6342661

---------------------------------------------------------------------------------------------------------------

3.改进版本:http://www.ipol.im/pub/art/2014/107/

















这篇关于多尺度视网膜增强算法(MSRCR)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591708

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖