与AI合作 -- 单例工厂2遗留的问题:bard的错误

2024-01-10 17:52

本文主要是介绍与AI合作 -- 单例工厂2遗留的问题:bard的错误,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

上一节我们针对函数内静态变量初始化在多线程环境中要不要用锁保护提出了疑问,代码如下:


class Singleton {
public:static Singleton& getInstance() {std::lock_guard<std::mutex> lock(mutex); // Acquire lock for thread safetystatic Singleton instance; // Local static variable for thread safetyreturn instance;

结论

不必。C++11已经自己加锁了。

__cxa_guard_acquire

为了简单,我们先简单写个试验程序:

class Product {
public:Product(){std::cout<<"Product constructor"<<std::endl;}
};void test(){std::cout<<"I am in test()"<<std::endl;static Product pro;std::cout<<"leaving test()"<<std::endl;
}int main() {std::thread first(test);std::thread second(test);first.join();second.join();test();return 0;
}

直接用GDB或者objdump看下test函数对应的汇编:

(gdb) disass test
Dump of assembler code for function test():0x0000000000400e26 <+0>:     push   %rbp0x0000000000400e27 <+1>:     mov    %rsp,%rbp0x0000000000400e2a <+4>:     push   %r120x0000000000400e2c <+6>:     push   %rbx0x0000000000400e2d <+7>:     mov    $0x401808,%esi0x0000000000400e32 <+12>:    mov    $0x6030c0,%edi0x0000000000400e37 <+17>:    callq  0x400ca0 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>0x0000000000400e3c <+22>:    mov    $0x400c40,%esi0x0000000000400e41 <+27>:    mov    %rax,%rdi0x0000000000400e44 <+30>:    callq  0x400cd0 <_ZNSolsEPFRSoS_E@plt>0x0000000000400e49 <+35>:    movzbl 0x202390(%rip),%eax        # 0x6031e0 <_ZGVZ4testvE3pro>0x0000000000400e50 <+42>:    test   %al,%al0x0000000000400e52 <+44>:    sete   %al0x0000000000400e55 <+47>:    test   %al,%al0x0000000000400e57 <+49>:    je     0x400e86 <test()+96>0x0000000000400e59 <+51>:    mov    $0x6031e0,%edi0x0000000000400e5e <+56>:    callq  0x400d20 <__cxa_guard_acquire@plt>0x0000000000400e63 <+61>:    test   %eax,%eax0x0000000000400e65 <+63>:    setne  %al0x0000000000400e68 <+66>:    test   %al,%al0x0000000000400e6a <+68>:    je     0x400e86 <test()+96>0x0000000000400e6c <+70>:    mov    $0x0,%r12d0x0000000000400e72 <+76>:    mov    $0x6031d9,%edi0x0000000000400e77 <+81>:    callq  0x40103a <Product::Product()>0x0000000000400e7c <+86>:    mov    $0x6031e0,%edi0x0000000000400e81 <+91>:    callq  0x400c70 <__cxa_guard_release@plt>0x0000000000400e86 <+96>:    mov    $0x401817,%esi0x0000000000400e8b <+101>:   mov    $0x6030c0,%edi0x0000000000400e90 <+106>:   callq  0x400ca0 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>0x0000000000400e95 <+111>:   mov    $0x400c40,%esi0x0000000000400e9a <+116>:   mov    %rax,%rdi0x0000000000400e9d <+119>:   callq  0x400cd0 <_ZNSolsEPFRSoS_E@plt>0x0000000000400ea2 <+124>:   jmp    0x400ec1 <test()+155>0x0000000000400ea4 <+126>:   mov    %rax,%rbx0x0000000000400ea7 <+129>:   test   %r12b,%r12b0x0000000000400eaa <+132>:   jne    0x400eb6 <test()+144>0x0000000000400eac <+134>:   mov    $0x6031e0,%edi0x0000000000400eb1 <+139>:   callq  0x400c60 <__cxa_guard_abort@plt>0x0000000000400eb6 <+144>:   mov    %rbx,%rax0x0000000000400eb9 <+147>:   mov    %rax,%rdi0x0000000000400ebc <+150>:   callq  0x400d10 <_Unwind_Resume@plt>0x0000000000400ec1 <+155>:   pop    %rbx0x0000000000400ec2 <+156>:   pop    %r120x0000000000400ec4 <+158>:   pop    %rbp0x0000000000400ec5 <+159>:   retq

简单提一下_ZGVZ4testvE3pro demangle一下(第一次值是0,初始化后是1):

[mzhai@singletonFactoryAi]$ c++filt _ZGVZ4testvE3pro
guard variable for test()::pro

 着重看下面的__cxa_guard_acquire

看到__cxa_guard_acquire、__cxa_guard_release没?中间夹着Product::Product()

即使没见过这两个函数,也能猜到和static变量初始化有关,防止多个线程同时初始化一个静态变量. 这是我把__cxa_guard_acquire输入搜索引擎搜到的:

C++ constructor guards for static instances

Introduction

The libstd++ ABI requires implementations of the following functions:

int __cxa_guard_acquire(__guard *g);

void __cxa_guard_release(__guard *g);

void __cxa_guard_abort(__guard *g);

These functions are not intended to be ever used by the programmer, instead the C++ compiler will emit code calling them if statically allocated class instances are used. In a multi-threaded environment special care needs to be taken to prevent race conditions while initializing and using such instances. This modules provides them.

Usage

This module is intended to be used by platforms that want to provide C++ support, but the used standard C++ library does not provide these guards. In this case, adding this module will do the trick. The programmer / user should never interact with any of the functions.

Note that on some platforms the type __guard is defined differently from the "generic" definition, most notably ARM. For those platforms a header named cxx_ctor_guards_arch.h needs to be created containing the correct typedef and the preprocessor macro CXX_CTOR_GUARDS_CUSTOM_TYPE needs to be defined.

https://opensource.apple.com/source/libcppabi/libcppabi-14/src/cxa_guard.cxx 

int __cxxabiv1::__cxa_guard_acquire(uint64_t* guard_object)
{// Double check that the initializer has not already been runif ( initializerHasRun(guard_object) )return 0;// We now need to acquire a lock that allows only one thread// to run the initializer.  If a different thread calls// __cxa_guard_acquire() with the same guard object, we want // that thread to block until this thread is done running the // initializer and calls __cxa_guard_release().  But if the same// thread calls __cxa_guard_acquire() with the same guard object,// we want to abort.  // To implement this we have one global pthread recursive mutex // shared by all guard objects, but only one at a time.  

用GDB 模拟race condition

如果读者感兴趣,可以调试一下我们给出的程序:

(gdb) b __cxa_guard_acquire       使得两个线程都停在__cxa_guard_acquire
Breakpoint 2 at 0x7ffff7acf980
(gdb) r
Continuing.
Thread 2 "a.out" hit Breakpoint 2, 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.6Thread 3 "a.out" hit Breakpoint 2, 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.6
Quit(gdb) where
Selected thread is running.(gdb) info thread                2、3线程都停在了__cxa_guard_acquireId   Target Id                                   Frame
* 1    Thread 0x7ffff7fe1740 (LWP 2468153) "a.out" (running)2    Thread 0x7ffff6eb9700 (LWP 2468165) "a.out" 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.63    Thread 0x7ffff66b8700 (LWP 2468166) "a.out" 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.6(gdb) b Product::Product thread 2       
Breakpoint 3 at 0x401046: file static_var_in_func.cpp, line 36.
(gdb) thread apply 2 c            让第二个线程获得锁,先停在静态变量初始化中
Thread 2 (Thread 0x7ffff6eb9700 (LWP 2468165)):
Continuing.
Thread 2 "a.out" hit Breakpoint 3, Product::Product (this=0x6031d9 <test()::pro>) at static_var_in_func.cpp:36
36                      std::cout<<"Product constructor"<<std::endl;(gdb) thread apply 3 c            让第三个线程(还没获得锁)继续运行,应该卡在__cxa_guard_acquire 
Thread 3 (Thread 0x7ffff66b8700 (LWP 2468166)):
Continuing.
^C
Thread 1 "a.out" received signal SIGINT, Interrupt.
0x00007ffff78226cd in __pthread_timedjoin_ex () from /lib64/libpthread.so.0
(gdb) thread 3
[Switching to thread 3 (Thread 0x7ffff66b8700 (LWP 2468166))](running)
(gdb) where
Selected thread is running.
(gdb) interrupt
(gdb)
Thread 3 "a.out" stopped.
0x00007ffff72759bd in syscall () from /lib64/libc.so.6
Quit
(gdb) where                       正如预期,第三个线程卡在获得锁上
#0  0x00007ffff72759bd in syscall () from /lib64/libc.so.6
#1  0x00007ffff7acfa3f in __cxa_guard_acquire () from /lib64/libstdc++.so.6
#2  0x0000000000400e63 in test () at static_var_in_func.cpp:42
#3  0x0000000000401205 in std::__invoke_impl<void, void (*)()> (__f=@0x616008: 0x400e26 <test()>) at /usr/include/c++/8/bits/invoke.h:60
#4  0x0000000000401085 in std::__invoke<void (*)()> (__fn=@0x616008: 0x400e26 <test()>) at /usr/include/c++/8/bits/invoke.h:95
#5  0x00000000004016d4 in std::thread::_Invoker<std::tuple<void (*)()> >::_M_invoke<0ul> (this=0x616008) at /usr/include/c++/8/thread:244
#6  0x00000000004016aa in std::thread::_Invoker<std::tuple<void (*)()> >::operator() (this=0x616008) at /usr/include/c++/8/thread:253
#7  0x000000000040168e in std::thread::_State_impl<std::thread::_Invoker<std::tuple<void (*)()> > >::_M_run (this=0x616000) at /usr/include/c++/8/thread:196
#8  0x00007ffff7afbb23 in execute_native_thread_routine () from /lib64/libstdc++.so.6
#9  0x00007ffff78211ca in start_thread () from /lib64/libpthread.so.0
#10 0x00007ffff7275e73 in clone () from /lib64/libc.so.6

AI的回答

mzhai: Assume there is a static variable A which is an object of a class, this static variable is defined in a function named funA. When is A initialized? and is there a race condition if two threads call funA concurrently?

ChatGPT: In C++, static variables inside functions (local static variables) are initialized the first time the program execution encounters their declaration within that function. They're initialized in a thread-safe manner in compliance with the C++11 standard.

For instance, if you have a function funA with a static variable A inside it, like this:

void funA() { static MyClass A; // ... } 

When funA is called for the first time, the static MyClass A; line will be executed. This initialization occurs once, and subsequent calls to funA won't reinitialize A. This initialization is thread-safe in C++11 and later, meaning the standard guarantees that it will be properly handled in a multi-threaded context. There won't be a race condition during this initialization.

Bard

Here's a breakdown of the initialization and potential race condition:

1. Initialization of static variable A:

  • When: The static variable A will be initialized the first time control flow reaches its declaration within funA, even if it's not explicitly used in that particular call.
  • How: The constructor of the class will be invoked to initialize A's members.
  • Subsequent calls: In subsequent calls to funA, the already initialized instance of A will be used, and the constructor won't be called again.

2. Race condition in multi-threaded environment:

  • Yes, a race condition can occur if two threads call funA concurrently before A has been initialized.
  • Scenario:
    • Both threads enter funA for the first time.
    • Both threads see that A hasn't been initialized yet.
    • Both threads attempt to create an instance of A, leading to multiple initializations and potential data corruption or crashes.

 可见在这方面Bard不如Chat GPT正确。

他山之石

后来搜到一篇外文博客,读者可以作为参考。Adventures in Systems Programming: C++ Local Statics - In Pursuit of Laziness

这篇关于与AI合作 -- 单例工厂2遗留的问题:bard的错误的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591602

相关文章

SpringBoot+Docker+Graylog 如何让错误自动报警

《SpringBoot+Docker+Graylog如何让错误自动报警》SpringBoot默认使用SLF4J与Logback,支持多日志级别和配置方式,可输出到控制台、文件及远程服务器,集成ELK... 目录01 Spring Boot 默认日志框架解析02 Spring Boot 日志级别详解03 Sp

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模