与AI合作 -- 单例工厂2遗留的问题:bard的错误

2024-01-10 17:52

本文主要是介绍与AI合作 -- 单例工厂2遗留的问题:bard的错误,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题

上一节我们针对函数内静态变量初始化在多线程环境中要不要用锁保护提出了疑问,代码如下:


class Singleton {
public:static Singleton& getInstance() {std::lock_guard<std::mutex> lock(mutex); // Acquire lock for thread safetystatic Singleton instance; // Local static variable for thread safetyreturn instance;

结论

不必。C++11已经自己加锁了。

__cxa_guard_acquire

为了简单,我们先简单写个试验程序:

class Product {
public:Product(){std::cout<<"Product constructor"<<std::endl;}
};void test(){std::cout<<"I am in test()"<<std::endl;static Product pro;std::cout<<"leaving test()"<<std::endl;
}int main() {std::thread first(test);std::thread second(test);first.join();second.join();test();return 0;
}

直接用GDB或者objdump看下test函数对应的汇编:

(gdb) disass test
Dump of assembler code for function test():0x0000000000400e26 <+0>:     push   %rbp0x0000000000400e27 <+1>:     mov    %rsp,%rbp0x0000000000400e2a <+4>:     push   %r120x0000000000400e2c <+6>:     push   %rbx0x0000000000400e2d <+7>:     mov    $0x401808,%esi0x0000000000400e32 <+12>:    mov    $0x6030c0,%edi0x0000000000400e37 <+17>:    callq  0x400ca0 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>0x0000000000400e3c <+22>:    mov    $0x400c40,%esi0x0000000000400e41 <+27>:    mov    %rax,%rdi0x0000000000400e44 <+30>:    callq  0x400cd0 <_ZNSolsEPFRSoS_E@plt>0x0000000000400e49 <+35>:    movzbl 0x202390(%rip),%eax        # 0x6031e0 <_ZGVZ4testvE3pro>0x0000000000400e50 <+42>:    test   %al,%al0x0000000000400e52 <+44>:    sete   %al0x0000000000400e55 <+47>:    test   %al,%al0x0000000000400e57 <+49>:    je     0x400e86 <test()+96>0x0000000000400e59 <+51>:    mov    $0x6031e0,%edi0x0000000000400e5e <+56>:    callq  0x400d20 <__cxa_guard_acquire@plt>0x0000000000400e63 <+61>:    test   %eax,%eax0x0000000000400e65 <+63>:    setne  %al0x0000000000400e68 <+66>:    test   %al,%al0x0000000000400e6a <+68>:    je     0x400e86 <test()+96>0x0000000000400e6c <+70>:    mov    $0x0,%r12d0x0000000000400e72 <+76>:    mov    $0x6031d9,%edi0x0000000000400e77 <+81>:    callq  0x40103a <Product::Product()>0x0000000000400e7c <+86>:    mov    $0x6031e0,%edi0x0000000000400e81 <+91>:    callq  0x400c70 <__cxa_guard_release@plt>0x0000000000400e86 <+96>:    mov    $0x401817,%esi0x0000000000400e8b <+101>:   mov    $0x6030c0,%edi0x0000000000400e90 <+106>:   callq  0x400ca0 <_ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc@plt>0x0000000000400e95 <+111>:   mov    $0x400c40,%esi0x0000000000400e9a <+116>:   mov    %rax,%rdi0x0000000000400e9d <+119>:   callq  0x400cd0 <_ZNSolsEPFRSoS_E@plt>0x0000000000400ea2 <+124>:   jmp    0x400ec1 <test()+155>0x0000000000400ea4 <+126>:   mov    %rax,%rbx0x0000000000400ea7 <+129>:   test   %r12b,%r12b0x0000000000400eaa <+132>:   jne    0x400eb6 <test()+144>0x0000000000400eac <+134>:   mov    $0x6031e0,%edi0x0000000000400eb1 <+139>:   callq  0x400c60 <__cxa_guard_abort@plt>0x0000000000400eb6 <+144>:   mov    %rbx,%rax0x0000000000400eb9 <+147>:   mov    %rax,%rdi0x0000000000400ebc <+150>:   callq  0x400d10 <_Unwind_Resume@plt>0x0000000000400ec1 <+155>:   pop    %rbx0x0000000000400ec2 <+156>:   pop    %r120x0000000000400ec4 <+158>:   pop    %rbp0x0000000000400ec5 <+159>:   retq

简单提一下_ZGVZ4testvE3pro demangle一下(第一次值是0,初始化后是1):

[mzhai@singletonFactoryAi]$ c++filt _ZGVZ4testvE3pro
guard variable for test()::pro

 着重看下面的__cxa_guard_acquire

看到__cxa_guard_acquire、__cxa_guard_release没?中间夹着Product::Product()

即使没见过这两个函数,也能猜到和static变量初始化有关,防止多个线程同时初始化一个静态变量. 这是我把__cxa_guard_acquire输入搜索引擎搜到的:

C++ constructor guards for static instances

Introduction

The libstd++ ABI requires implementations of the following functions:

int __cxa_guard_acquire(__guard *g);

void __cxa_guard_release(__guard *g);

void __cxa_guard_abort(__guard *g);

These functions are not intended to be ever used by the programmer, instead the C++ compiler will emit code calling them if statically allocated class instances are used. In a multi-threaded environment special care needs to be taken to prevent race conditions while initializing and using such instances. This modules provides them.

Usage

This module is intended to be used by platforms that want to provide C++ support, but the used standard C++ library does not provide these guards. In this case, adding this module will do the trick. The programmer / user should never interact with any of the functions.

Note that on some platforms the type __guard is defined differently from the "generic" definition, most notably ARM. For those platforms a header named cxx_ctor_guards_arch.h needs to be created containing the correct typedef and the preprocessor macro CXX_CTOR_GUARDS_CUSTOM_TYPE needs to be defined.

https://opensource.apple.com/source/libcppabi/libcppabi-14/src/cxa_guard.cxx 

int __cxxabiv1::__cxa_guard_acquire(uint64_t* guard_object)
{// Double check that the initializer has not already been runif ( initializerHasRun(guard_object) )return 0;// We now need to acquire a lock that allows only one thread// to run the initializer.  If a different thread calls// __cxa_guard_acquire() with the same guard object, we want // that thread to block until this thread is done running the // initializer and calls __cxa_guard_release().  But if the same// thread calls __cxa_guard_acquire() with the same guard object,// we want to abort.  // To implement this we have one global pthread recursive mutex // shared by all guard objects, but only one at a time.  

用GDB 模拟race condition

如果读者感兴趣,可以调试一下我们给出的程序:

(gdb) b __cxa_guard_acquire       使得两个线程都停在__cxa_guard_acquire
Breakpoint 2 at 0x7ffff7acf980
(gdb) r
Continuing.
Thread 2 "a.out" hit Breakpoint 2, 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.6Thread 3 "a.out" hit Breakpoint 2, 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.6
Quit(gdb) where
Selected thread is running.(gdb) info thread                2、3线程都停在了__cxa_guard_acquireId   Target Id                                   Frame
* 1    Thread 0x7ffff7fe1740 (LWP 2468153) "a.out" (running)2    Thread 0x7ffff6eb9700 (LWP 2468165) "a.out" 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.63    Thread 0x7ffff66b8700 (LWP 2468166) "a.out" 0x00007ffff7acf980 in __cxa_guard_acquire () from /lib64/libstdc++.so.6(gdb) b Product::Product thread 2       
Breakpoint 3 at 0x401046: file static_var_in_func.cpp, line 36.
(gdb) thread apply 2 c            让第二个线程获得锁,先停在静态变量初始化中
Thread 2 (Thread 0x7ffff6eb9700 (LWP 2468165)):
Continuing.
Thread 2 "a.out" hit Breakpoint 3, Product::Product (this=0x6031d9 <test()::pro>) at static_var_in_func.cpp:36
36                      std::cout<<"Product constructor"<<std::endl;(gdb) thread apply 3 c            让第三个线程(还没获得锁)继续运行,应该卡在__cxa_guard_acquire 
Thread 3 (Thread 0x7ffff66b8700 (LWP 2468166)):
Continuing.
^C
Thread 1 "a.out" received signal SIGINT, Interrupt.
0x00007ffff78226cd in __pthread_timedjoin_ex () from /lib64/libpthread.so.0
(gdb) thread 3
[Switching to thread 3 (Thread 0x7ffff66b8700 (LWP 2468166))](running)
(gdb) where
Selected thread is running.
(gdb) interrupt
(gdb)
Thread 3 "a.out" stopped.
0x00007ffff72759bd in syscall () from /lib64/libc.so.6
Quit
(gdb) where                       正如预期,第三个线程卡在获得锁上
#0  0x00007ffff72759bd in syscall () from /lib64/libc.so.6
#1  0x00007ffff7acfa3f in __cxa_guard_acquire () from /lib64/libstdc++.so.6
#2  0x0000000000400e63 in test () at static_var_in_func.cpp:42
#3  0x0000000000401205 in std::__invoke_impl<void, void (*)()> (__f=@0x616008: 0x400e26 <test()>) at /usr/include/c++/8/bits/invoke.h:60
#4  0x0000000000401085 in std::__invoke<void (*)()> (__fn=@0x616008: 0x400e26 <test()>) at /usr/include/c++/8/bits/invoke.h:95
#5  0x00000000004016d4 in std::thread::_Invoker<std::tuple<void (*)()> >::_M_invoke<0ul> (this=0x616008) at /usr/include/c++/8/thread:244
#6  0x00000000004016aa in std::thread::_Invoker<std::tuple<void (*)()> >::operator() (this=0x616008) at /usr/include/c++/8/thread:253
#7  0x000000000040168e in std::thread::_State_impl<std::thread::_Invoker<std::tuple<void (*)()> > >::_M_run (this=0x616000) at /usr/include/c++/8/thread:196
#8  0x00007ffff7afbb23 in execute_native_thread_routine () from /lib64/libstdc++.so.6
#9  0x00007ffff78211ca in start_thread () from /lib64/libpthread.so.0
#10 0x00007ffff7275e73 in clone () from /lib64/libc.so.6

AI的回答

mzhai: Assume there is a static variable A which is an object of a class, this static variable is defined in a function named funA. When is A initialized? and is there a race condition if two threads call funA concurrently?

ChatGPT: In C++, static variables inside functions (local static variables) are initialized the first time the program execution encounters their declaration within that function. They're initialized in a thread-safe manner in compliance with the C++11 standard.

For instance, if you have a function funA with a static variable A inside it, like this:

void funA() { static MyClass A; // ... } 

When funA is called for the first time, the static MyClass A; line will be executed. This initialization occurs once, and subsequent calls to funA won't reinitialize A. This initialization is thread-safe in C++11 and later, meaning the standard guarantees that it will be properly handled in a multi-threaded context. There won't be a race condition during this initialization.

Bard

Here's a breakdown of the initialization and potential race condition:

1. Initialization of static variable A:

  • When: The static variable A will be initialized the first time control flow reaches its declaration within funA, even if it's not explicitly used in that particular call.
  • How: The constructor of the class will be invoked to initialize A's members.
  • Subsequent calls: In subsequent calls to funA, the already initialized instance of A will be used, and the constructor won't be called again.

2. Race condition in multi-threaded environment:

  • Yes, a race condition can occur if two threads call funA concurrently before A has been initialized.
  • Scenario:
    • Both threads enter funA for the first time.
    • Both threads see that A hasn't been initialized yet.
    • Both threads attempt to create an instance of A, leading to multiple initializations and potential data corruption or crashes.

 可见在这方面Bard不如Chat GPT正确。

他山之石

后来搜到一篇外文博客,读者可以作为参考。Adventures in Systems Programming: C++ Local Statics - In Pursuit of Laziness

这篇关于与AI合作 -- 单例工厂2遗留的问题:bard的错误的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/591602

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Python中ModuleNotFoundError: No module named ‘timm’的错误解决

《Python中ModuleNotFoundError:Nomodulenamed‘timm’的错误解决》本文主要介绍了Python中ModuleNotFoundError:Nomodulen... 目录一、引言二、错误原因分析三、解决办法1.安装timm模块2. 检查python环境3. 解决安装路径问题

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给