期货日数据维护与使用_日数据维护_主力合约计算逻辑

2024-01-10 07:04

本文主要是介绍期货日数据维护与使用_日数据维护_主力合约计算逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

主力合约换月规则(文化财经)

主力合约计算逻辑 

数据准备

代码

​下载


主力合约换月规则(文化财经)

主力合约计算逻辑 

数据准备

本文以沪银为例,将沪银所有日数据文件放入一个文件夹中,文件名命名方式为 合约名_交割年份.csv

代码

def caculate_main_from_zero():main_column_list = ['ticker','deliYear','tradeDate','openPrice','highestPrice','lowestPrice','closePrice','settlePrice','turnoverVol','turnoverValue','openInt']# 放置品种所有日数据文件,文件名 合约名_交割年份.csvpre_dir = r'E:/temp000/'file_list = os.listdir(pre_dir)# 将合约日文件合并到一个pd.DataFrame()中df = pd.DataFrame()for item in file_list:file_path = pre_dir + itemitem_str = item.split('.')[0]ticker = item_str.split('_')[0]deliYear = item_str.split('_')[1]df_one = pd.read_csv(file_path,encoding='utf-8')df_one['ticker'] = tickerdf_one['deliYear'] = deliYeardf = pd.concat([df,df_one])pass# 去除数据为空的数据df.dropna(inplace=True)if len(df)<=0:print('所有合约数据为空')return# 按日期分组df['o_date'] = pd.to_datetime(df['tradeDate'])df.sort_values(by='o_date',ascending=True,inplace=True)df['row_i'] = [i for i in range(len(df))]df_group = df.groupby(by='o_date',as_index=False)df_main = pd.DataFrame()cur_main_ticker = Nonecur_main_deliYear = Nonepre_next_ticker = Nonepre_next_deliYear = Nonenext_change_yeah = Falsefor name,group in df_group:if len(group)<=1:# 当日只有一条日数据,那该数据对应的合约即为主力合约df_main = pd.concat([df_main,group.iloc[[0]]])cur_main_ticker = group.iloc[0]['ticker']cur_main_deliYear = group.iloc[0]['deliYear']passelse:# 当日有多条日数据,分别计算成交量最大和持仓量最大的合约# 成交量最大合约df_vol = group.sort_values(by='turnoverVol',ascending=False)# 持仓量最大合约df_inte = group.sort_values(by='openInt',ascending=False)# 如果成交量最大与持仓量最大为同一合约if df_vol.iloc[0]['row_i'] == df_inte.iloc[0]['row_i']:if not cur_main_ticker:# 不存在前主力合约,那该合约即为主力合约df_main = pd.concat([df_main,df_vol.iloc[[0]]])cur_main_ticker = df_vol.iloc[0]['ticker']cur_main_deliYear = df_vol.iloc[0]['deliYear']passelse:if next_change_yeah:# 有【预备主力合约】if df_vol.iloc[0]['ticker'] == pre_next_ticker and df_vol.iloc[0]['deliYear']==pre_next_deliYear:# 【预备主力合约】继昨日是成交量和持仓量同时最大后,今日还是成交量和持仓量最大,切换df_main = pd.concat([df_main, df_vol.iloc[[0]]])cur_main_ticker = pre_next_tickercur_main_deliYear = pre_next_deliYearnext_change_yeah = Falsepasselse:# 【预备主力合约】继昨日是成交量和持仓量同时最大后,今日不济,【预备主力合约】撤销next_change_yeah = False# ----------- 【当日成交量最大和持仓量最大 为同一个合约】 延续当前合约 start# 存在前主力合约,判断该合约是否与前主力合约一致if df_vol.iloc[0]['ticker'] == cur_main_ticker and df_vol.iloc[0]['deliYear'] == cur_main_deliYear:# 一致,主力合约延续,不切换df_main = pd.concat([df_main, df_vol.iloc[[0]]])passelse:# 不一致,主力合约延续,不切换;预备下一交易日切换one_df = group.loc[(group['ticker'] == cur_main_ticker) & (group['deliYear'] == cur_main_deliYear)].copy()df_main = pd.concat([df_main, one_df.iloc[[0]]])next_change_yeah = Truepre_next_ticker = df_vol.iloc[0]['ticker']pre_next_deliYear = df_vol.iloc[0]['deliYear']pass# ----------- 【当日成交量最大和持仓量最大 为同一个合约】 延续当前合约 endpasspasselse:# 无【预备主力合约】# ----------- 【当日成交量最大和持仓量最大 为同一个合约】 延续当前合约 start# 存在前主力合约,判断该合约是否与前主力合约一致if df_vol.iloc[0]['ticker'] == cur_main_ticker and df_vol.iloc[0]['deliYear'] == cur_main_deliYear:# 一致,主力合约延续,不切换df_main = pd.concat([df_main, df_vol.iloc[[0]]])passelse:# 不一致,主力合约延续,不切换;预备下一交易日切换one_df = group.loc[(group['ticker'] == cur_main_ticker) & (group['deliYear'] == cur_main_deliYear)].copy()df_main = pd.concat([df_main, one_df.iloc[[0]]])next_change_yeah = Truepre_next_ticker = df_vol.iloc[0]['ticker']pre_next_deliYear = df_vol.iloc[0]['deliYear']pass# ----------- 【当日成交量最大和持仓量最大 为同一个合约】 延续当前合约 endpasspasselse:# 成交量最大和持仓量最大不是同一合约if not cur_main_ticker:df_main = pd.concat([df_main,df_vol.iloc[[0]]])cur_main_ticker = df_vol.iloc[0]['ticker']cur_main_deliYear = df_vol.iloc[0]['deliYear']passelse:if df_vol.iloc[0]['ticker']==cur_main_ticker and df_vol.iloc[0]['deliYear']==cur_main_deliYear:df_main = pd.concat([df_main,df_vol.iloc[[0]]])elif df_inte.iloc[0]['ticker'] == cur_main_ticker and df_inte.iloc[0]['deliYear']==cur_main_deliYear:df_main = pd.concat([df_main,df_inte.iloc[[0]]])else:df_main = pd.concat([df_main,df_vol.iloc[[0]]])cur_main_ticker = df_vol.iloc[0]['ticker']cur_main_deliYear = df_vol.iloc[0]['deliYear']passpasspasspasspassif len(df_main) <=0:print('主力合约条数为0')returndf_main = df_main.loc[:,main_column_list].copy()df_main.to_csv(pre_dir + 'AG.csv',encoding='utf-8')pass

结果存储为 AG.csv

下载

链接:https://pan.baidu.com/s/1X0O4ZtwX8_ZmdDJB4DJXTA 
提取码:jjdz

这篇关于期货日数据维护与使用_日数据维护_主力合约计算逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589957

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传