Leetcode|146. LRU 缓存机制(key2node哈希链表)

2024-01-10 03:48

本文主要是介绍Leetcode|146. LRU 缓存机制(key2node哈希链表),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

相关题目

《Leetcode|146. LRU 缓存机制(key2node哈希链表)》
《Leetcode|460. LFU 缓存(KV+KF+FK哈希链表+minFreq)》

解题过程

在这里插入图片描述
其实这里只要1个哈希链表足矣,代码不难,但一次写对不易

  • 注意删除链表节点时,对应也要删除哈希表中的KV
  • 添加链表节点时,也要在哈希表中添加KV
struct DListNode {int key, val;DListNode* prev;DListNode* next;DListNode(): key(0), val(0), prev(nullptr), next(nullptr) {}DListNode(int _key, int _val): key(_key), val(_val), prev(nullptr), next(nullptr) {} 
};class LRUCache {
private:int size, capacity;DListNode* head;DListNode* tail;unordered_map<int, DListNode*> key2node;
public:LRUCache(int _capacity): capacity(_capacity), size(0) {head = new DListNode();tail = new DListNode();head->next = tail;tail->prev = head;}int get(int key) {if (key2node.count(key)) {makeRecent(key);return key2node[key]->val;}return -1;}void put(int key, int value) {if (key2node.count(key)) {key2node[key]->val = value;makeRecent(key);return;}if (capacity == size)removeLongestKey();addRecentKey(key, value);}void makeRecent(int key) {// 取出待提升优先级key对应的nodeauto node = key2node[key];// 在双链表中删除该节点node->prev->next = node->next;node->next->prev = node->prev;// 将该节点插入到双链表中尾部node->prev = tail->prev;node->next = tail;tail->prev->next = node;tail->prev = node;}void removeLongestKey() {// 删除哈希表对应KVkey2node.erase(head->next->key);// 删除双链表对应KVauto deletenode = head->next;deletenode->next->prev = head;head->next = deletenode->next; size--;}void addRecentKey(int key, int value) {auto node = new DListNode(key, value);// 更新双链表node->prev = tail->prev;node->next = tail;tail->prev->next = node;tail->prev = node;// 更新哈希表key2node[key] = node;size++;}
};/**int main() {LRUCache lru(2);lru.put(1, 1);lru.put(2, 2);cout << lru.get(1) << endl;lru.put(3, 3);cout << lru.get(2) << endl;lru.put(4, 4);cout << lru.get(1) << endl;cout << lru.get(3) << endl;cout << lru.get(4) << endl;return 0;
}*/

在这里插入图片描述

致谢

图片来源于「labuladong」公众号,欢迎大家关注这位大佬的公号

这篇关于Leetcode|146. LRU 缓存机制(key2node哈希链表)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589444

相关文章

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

Redis的持久化之RDB和AOF机制详解

《Redis的持久化之RDB和AOF机制详解》:本文主要介绍Redis的持久化之RDB和AOF机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述RDB(Redis Database)核心原理触发方式手动触发自动触发AOF(Append-Only File)核

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe