Umap与 t-sne可视化CNN特征

2024-01-10 03:08
文章标签 可视化 cnn 特征 sne umap

本文主要是介绍Umap与 t-sne可视化CNN特征,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

考虑到umap 比 t-sne快,而且全局结构更好。

demo网站

Understanding UMAP

doc:

https://github.com/lmcinnes/umap

How to Use UMAP — umap 0.5 documentation

plt.scatter()_coder-CSDN博客_plt.scatter

tqdm 遍历 DataLoader 报错 TypeError: ‘module‘ object is not callable 解决

tqdm 遍历 DataLoader 报错 TypeError: ‘module‘ object is not callable 解决_月亮不知道的博客-CSDN博客

Python—UMAP流形数据降维工具简介 - 知乎

numpy pytorch 拾遗_slzlincent的博客-CSDN博客_net.apply(init_weights)

对比看来 umap更关注gloabal 和 tsne更关注 local

tsne 可视化demo网站

How to Use t-SNE Effectively

t-SNE实践——sklearn教程_hustqb的博客-CSDN博客_python sklearn tsne

doc:

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

这篇关于Umap与 t-sne可视化CNN特征的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589357

相关文章

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

基于SSM+Vue+MySQL的可视化高校公寓管理系统

系统展示 管理员界面 宿管界面 学生界面 系统背景   当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前,不接受信息改革带来的信息技术的企业随时面临被淘汰,被取代的风险。所以当今,各个行业领域,不管是传统的教育行业

《计算机视觉工程师养成计划》 ·数字图像处理·数字图像处理特征·概述~

1 定义         从哲学角度看:特征是从事物当中抽象出来用于区别其他类别事物的属性集合,图像特征则是从图像中抽取出来用于区别其他类别图像的属性集合。         从获取方式看:图像特征是通过对图像进行测量或借助算法计算得到的一组表达特性集合的向量。 2 认识         有些特征是视觉直观感受到的自然特征,例如亮度、边缘轮廓、纹理、色彩等。         有些特征需要通

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

「大数据分析」图形可视化,如何选择大数据可视化图形?

​图形可视化技术,在大数据分析中,是一个非常重要的关键部分。我们前期通过数据获取,数据处理,数据分析,得出结果,这些过程都是比较抽象的。如果是非数据分析专业人员,很难清楚我们这些工作,到底做了些什么事情。即使是专业人员,在不清楚项目,不了解业务规则,不熟悉技术细节的情况下。要搞清楚我们的大数据分析,这一系列过程,也是比较困难的。 我们在数据处理和分析完成后,一般来说,都需要形成结论报告。怎样让大

11Python的Pandas:可视化

Pandas本身并没有直接的可视化功能,但它与其他Python库(如Matplotlib和Seaborn)无缝集成,允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法: 1. 使用Matplotlib Pandas中的plot()方法实际上是基于Matplotlib的,你可以使用它来绘制各种基本图表,例如折线图、柱状图、散点图等。 import pandas

【全网最全】2024年数学建模国赛A题30页完整建模文档+17页成品论文+保奖matla代码+可视化图表等(后续会更新)

您的点赞收藏是我继续更新的最大动力! 一定要点击如下的卡片,那是获取资料的入口! 【全网最全】2024年数学建模国赛A题30页完整建模文档+17页成品论文+保奖matla代码+可视化图表等(后续会更新)「首先来看看目前已有的资料,还会不断更新哦~一次购买,后续不会再被收费哦,保证是全网最全资源,随着后续内容更新,价格会上涨,越早购买,价格越低,让大家再也不需要到处买断片资料啦~💰💸👋」�