分类——决策树ID3与C4.5以及Python实现

2024-01-10 00:58

本文主要是介绍分类——决策树ID3与C4.5以及Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

决策树算法是一个分类算法,ID3以及C4.5决策树是多叉树。

核心思想:根据特征及对应特征值组成元组为切分点切分样本空间。

基本概念:

熵(entropy):该词最初来自于热力学,用来表示系统的混乱程度。香农借用该词表示一个随机过程的不确定性程度,即香农熵。式中Pi指随机变量取某个值的概率。

条件熵(conditional entropy):给定一个划分数据的条件X=x,那么随机变量Y的随机程度将下降。正如一个热力学系统,在外力做功的情况下,系统熵下降。下降后的熵就是基于条件X=x的条件熵。

实际计算,就是根据特征Y的取值将数据集划分成若干子数据集,分别计算子数据集的熵,然后以子数据集占比为权重求平均值。

信息增益(information gain):加入限制条件后,信息的随机性减少程度。即划分前的熵与条件熵的差。特征X对数据集D的信息增益为:

       由公式可知,计算条件熵时,特征X若取值较多,那么数据划分更细,则条件熵偏向于减小,极端情况下,每个样本都是独一无二的,那么条件熵为0。信息增益就偏向于取值多的特征,进行更多的划分,故引入信息增益比。

信息增益比(informationgain ratio):

其中,n就是特征X不同取值的个数,也即子数据集的个数。分母是数据集自身划分引起的熵变。显然,划分越多,熵越大。

 优点:

1. 容易解释,可视化。模型是“白箱”

2. 无需过多数据准备

3. 预测过程时间复杂度为log(n)

4. 能够处理连续以及离散值

5. 能够很好处理多分类问题

缺点:

1. 容易过拟合。可通过剪枝等方法减轻

2. 稳定性差。可通过集成学习改进

3. 学习过程是一个NP完全问题

4. 模型不能表示XOR等概念

5. 对类不平衡样本集敏感

算法流程:

Input: 阈值epsilon, 训练数据集X, y

Output: 决策树

  • Step1:初始化,构建特征集及空树。
  • Step2:递归构建决策树。

                  参数:特征集,子训练数据集X_data, y_data

                  递归终止条件:

                   1.集只有一个类,返回该类

                   2.特征集为空,返回最频繁的类

                   3.切分数据集前后,信息增益(比)小于epsilon

                  树的构建流程:

                  1. 计算每个特征的信息增益(比),以及切分的子数据集的索引。

                  2. 选取信息增益(比)最大的特征为最优特征,构建当前节点。

                  3. 从特征集中去除当前最优特征,并对相应的子数据集分别进行步骤1、2构建子树。

  • Step3: 运用构建好的决策树进行预测。递归搜索树,碰到叶节点则返回类标记。
"""
ID3&C4.5决策树算法
"""
import math
from collections import Counter, defaultdictimport numpy as npclass node:# 这里构建树的节点类,也可用字典来表示树结构def __init__(self, fea=-1, res=None, child=None):self.fea = feaself.res = resself.child = child  # 特征的每个值对应一颗子树,特征值为键,相应子树为值class DecisionTree:def __init__(self, epsilon=1e-3, metric='C4.5'):self.epsilon = epsilonself.tree = Noneself.metric = metricdef exp_ent(self, y_data):# 计算经验熵c = Counter(y_data)  # 统计各个类标记的个数ent = 0N = len(y_data)for val in c.values():p = val / Nent += -p * math.log2(p)return entdef con_ent(self, fea, X_data, y_data):# 计算条件熵并返回,同时返回切分后的各个子数据集fea_val_unique = Counter(X_data[:, fea])subdata_inds = defaultdict(list)  # 根据特征fea下的值切分数据集for ind, sample in enumerate(X_data):subdata_inds[sample[fea]].append(ind)  # 挑选某个值对应的所有样本点的索引ent = 0N = len(y_data)for key, val in fea_val_unique.items():pi = val / Nent += pi * self.exp_ent(y_data[subdata_inds[key]])return ent, subdata_indsdef infoGain(self, fea, X_data, y_data):# 计算信息增益exp_ent = self.exp_ent(y_data)con_ent, subdata_inds = self.con_ent(fea, X_data, y_data)return exp_ent - con_ent, subdata_indsdef infoGainRatio(self, fea, X_data, y_data):# 计算信息增益比g, subdata_inds = self.infoGain(fea, X_data, y_data)N = len(y_data)split_info = 0for val in subdata_inds.values():p = len(val) / Nsplit_info -= p * math.log2(p)return g / split_info, subdata_indsdef bestfea(self, fea_list, X_data, y_data):# 获取最优切分特征、相应的信息增益(比)以及切分后的子数据集score_func = self.infoGainRatioif self.metric == 'ID3':score_func = self.infoGainbestfea = fea_list[0]  # 初始化最优特征gmax, bestsubdata_inds = score_func(bestfea, X_data, y_data)  # 初始化最大信息增益及切分后的子数据集for fea in fea_list[1:]:g, subdata_inds = score_func(fea, X_data, y_data)if g > gmax:bestfea = feabestsubdata_inds = subdata_indsgmax = greturn gmax, bestfea, bestsubdata_indsdef buildTree(self, fea_list, X_data, y_data):# 递归构建树label_unique = np.unique(y_data)if label_unique.shape[0] == 1:  # 数据集只有一个类,直接返回该类return node(res=label_unique[0])if not fea_list:return node(res=Counter(y_data).most_common(1)[0][0])gmax, bestfea, bestsubdata_inds = self.bestfea(fea_list, X_data, y_data)if gmax < self.epsilon:  # 信息增益比小于阈值,返回数据集中出现最多的类return node(res=Counter(y_data).most_common(1)[0][0])else:fea_list.remove(bestfea)child = {}for key, val in bestsubdata_inds.items():child[key] = self.buildTree(fea_list, X_data[val], y_data[val])return node(fea=bestfea, child=child)def fit(self, X_data, y_data):fea_list = list(range(X_data.shape[1]))self.tree = self.buildTree(fea_list, X_data, y_data)returndef predict(self, X):def helper(X, tree):if tree.res is not None:  # 表明到达叶节点return tree.reselse:try:sub_tree = tree.child[X[tree.fea]]return helper(X, sub_tree)  # 根据对应特征下的值返回相应的子树except:print('input data is out of scope')return helper(X, self.tree)if __name__ == '__main__':import timestart = time.clock()data = np.array([['青年', '青年', '青年', '青年', '青年', '中年', '中年','中年', '中年', '中年', '老年', '老年', '老年', '老年', '老年'],['否', '否', '是', '是', '否', '否', '否', '是', '否','否', '否', '否', '是', '是', '否'],['否', '否', '否', '是', '否', '否', '否', '是','是', '是', '是', '是', '否', '否', '否'],['一般', '好', '好', '一般', '一般', '一般', '好', '好','非常好', '非常好', '非常好', '好', '好', '非常好', '一般'],['否', '否', '是', '是', '否', '否', '否', '是', '是','是', '是', '是', '是', '是', '否']])data = data.TX_data = data[:, :-1]y_data = data[:, -1]from machine_learning_algorithm.cross_validation import validateg = validate(X_data, y_data, ratio=0.2)for item in g:X_data_train, y_data_train, X_data_test, y_data_test = itemclf = DecisionTree()clf.fit(X_data_train, y_data_train)score = 0for X, y in zip(X_data_test,y_data_test):if clf.predict(X) == y:score += 1print(score / len(y_data_test))print(time.clock() - start)

我的GitHub
注:如有不当之处,请指正。

这篇关于分类——决策树ID3与C4.5以及Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/589019

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同