Java LeetCode篇-二叉搜索树经典解法(实现:二叉搜索树的最近公共祖先、根据前序遍历建树等)

本文主要是介绍Java LeetCode篇-二叉搜索树经典解法(实现:二叉搜索树的最近公共祖先、根据前序遍历建树等),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🔥博客主页: 【小扳_-CSDN博客】
❤感谢大家点赞👍收藏⭐评论✍
  

文章目录

        1.0 判断合法

        1.1 使用遍历方式实现验证二叉搜索树

        1.2 使用递归方式实现验证二叉搜索树

        2.0 求范围和

        2.1 使用非递归实现二叉搜索树的范围和

        2.2 使用递归方式实现二叉搜索树的范围和

        3.0 根据前序遍历结果建树

        3.1 使用非递归实现前序遍历构造二叉搜索树

        3.2 使用递归实现前序遍历构造二叉搜索树

        4.0 二叉搜索树的最近祖先

        4.1 使用遍历方式实现二叉搜索树的最近公共祖先

        5.0 本篇二叉搜索树实现 LeetCode 经典题的完整代码


        1.0 判断合法

题目:

        给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

        节点的左子树只包含 小于 当前节点的数。

        节点的右子树只包含 大于 当前节点的数。

        所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

输入:root = [2,1,3]
输出:true

OJ链接:98. 验证二叉搜索树

        1.1 使用遍历方式实现验证二叉搜索树

        具体思路为:利用中序遍历的效果,若每一个节点的值都比前一个节点的值大,则符合二叉搜索树;若出现某一个节点或者多个节点的值比前一个节点的值大,则符合二叉搜索树。

代码如下:

    //使用遍历实现验证二叉树public boolean isValidBST2(TreeNode node) {Stack<TreeNode> stack = new Stack<>();TreeNode p = node;long prev = Long.MIN_VALUE;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {TreeNode pop = stack.pop();if(pop.val <= prev) {return false;}prev = pop.val;p = pop.right;}}return true;}

        需要注意的是,当前节点的值等于前一个节点的值时,同样是不属于二叉搜索树。

        1.2 使用递归方式实现验证二叉搜索树

        具体思路为:利用递归遍历该二叉树时,先对节点的左子树进行操作,若该左子树返回的是 true 时,则继续判断当前节点的值 val ;若该左子树返回的是 false 时,则不需要再进行下去了,返回 false 结束。若当前当前节点的值小于前一个节点的值,则返回  false ;若当前节点的值大于前一个节点时,需要将 prev = node.val 赋值完后,继续判断下去。直到遇到 node == null 时,返回 true 。若左子树与当前的节点都为 true 时,接着到该节点的右子树。最后当且仅当,左右子树都为 true 时,说明该二叉树是属于二叉搜索树

代码如下:

      //使用递归实现验证二叉树private long prev = Long.MIN_VALUE;public boolean isValidBST(TreeNode root) {if(root == null) {return true;}boolean l = isValidBST(root.left);if (!l) {return false;}if(prev >= root.val) {return false;}prev = root.val;return isValidBST(root.right);}

        2.0 求范围和

题目:        

        给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。

示例 1:

输入:root = [10,5,15,3,7,null,18], low = 7, high = 15
输出:32

OJ链接:938. 二叉搜索树的范围和

        2.1 使用非递归实现二叉搜索树的范围和

        具体思路为:利用中序遍历效果,对于满足 node.val > slow && node.val  < high 的节点 node 将该节点的 node.val 累加到 sum 中,直到遇到 node.val > high 时,则直接返回 sum 结果即可。

代码如下:

    //使用非递归求二叉搜索树的范围和public int rangeSum2(TreeNode root,int slow,int high) {Stack<TreeNode> stack = new Stack<>();TreeNode p = root;int sum = 0;while(p != null || !stack.isEmpty()) {if(p != null) {stack.push(p);p = p.left;}else {TreeNode pop = stack.pop();if(pop.val > high) {break;}if(pop.val >= slow) {sum += pop.val;}p = pop.right;}}return sum;}

        2.2 使用递归方式实现二叉搜索树的范围和

        具体思路为:首先考虑符合 slow 与 high 范围之内的节点值,需要返回当前节点的值与该节点的左子树与右子树的符合范围的节点值。再来考虑不符合 slow 与 high 范围之内的节点值时,当 node.val < slow ,则不能再往该节点的左子树继续递归下去了,需要往该节点的右子树递归下去;当 node.val > slow ,则不能往该节点的右子树继续递归下去了,需要往该节点的左子树递归寻找符合范围值的节点。

代码如下:

    //使用递归求二叉搜索树的范围和public int rangeSum(TreeNode root,int slow, int high) {if(root == null) {return 0;}if(root.val < slow) {return rangeSum(root.right,slow,high);}if(root.val > high) {return rangeSum(root.left,slow,high);}return root.val + rangeSum(root.left,slow,high) + rangeSum(root.right,slow,high);}

        3.0 根据前序遍历结果建树

题目:

        给定一个整数数组,它表示BST(即 二叉搜索树 )的 先序遍历 ,构造树并返回其根。

保证 对于给定的测试用例,总是有可能找到具有给定需求的二叉搜索树。

二叉搜索树 是一棵二叉树,其中每个节点, Node.left 的任何后代的值 严格小于 Node.val , Node.right 的任何后代的值 严格大于 Node.val

二叉树的 前序遍历 首先显示节点的值,然后遍历Node.left,最后遍历Node.right

示例 1:

输入:preorder = [8,5,1,7,10,12]
输出:[8,5,10,1,7,null,12]

OJ链接:1008. 前序遍历构造二叉搜索树

         3.1 使用非递归实现前序遍历构造二叉搜索树

        具体思路为:利用数组中第一个值作为根节点的值,再遍历数组从索引 1 开始直到该数组长度 - 1 。得到每一个数组的值来创建一个新的节点,再自定义 insert 方法将该节点插入二叉搜索树中。关键的是:使用非递归方式实现该方法,首先定义一个 parent 变量,用来记录 p 的父亲节点,循环遍历 p ,若 p.val > node.val 时,先记录 parent = p,再 p = p.left ;若 p.val < node.val 时, 先记录 parent = p,再 p = p.right 。直到 p == null 时,跳出循环,则当前的 parent 就是该二叉树的叶子节点,在判断 node.valparent.val 的大小关系,若 node.val > parent.val,则 parent.right = node;若 node.val < parent.val,则 parent.left = node

代码如下:

//根据前序遍历的结果建树public TreeNode bstFromPreorder(int[] preorder) {TreeNode root = new TreeNode(preorder[0]);for(int i = 1; i < preorder.length; i++) {TreeNode p = new TreeNode(preorder[i]);insert(root,p);}return root;}//使用非递归的方式public void insert(TreeNode root, TreeNode node) {TreeNode p = root;TreeNode parent = null;while(p != null) {if(p.val < node.val) {parent = p;p = p.right;}else if(p.val > node.val) {parent = p;p = p.left;}}if(parent.val > node.val) {parent.left = node;}else {parent.right = node;}}

        3.2 使用递归实现前序遍历构造二叉搜索树

        具体思路为:递归遍历直到遇到 node == null 时,那么 node = new TreeNode(val) 。若 node.val > val 时,向左子树递归下去 node = node.left;若 node.val < val 时,先右子树递归下去 node = node.right 。每一次递归完,返回的时候,需要重新链接当前节点的左子树或者右子树,再返回当前节点。

代码如下:

//根据前序遍历的结果建树public TreeNode bstFromPreorder(int[] preorder) {TreeNode root = new TreeNode(preorder[0]);for(int i = 1; i < preorder.length; i++) {TreeNode p = new TreeNode(preorder[i]);insert(root,p);}return root;}
//使用递归的方式public  TreeNode insert(TreeNode node, int val) {if (node == null) {return new TreeNode(val);}if (node.val > val) {node.left = insert(node.left,val);}else {node.right = insert(node.right,val);}return node;}

        4.0 二叉搜索树的最近祖先

题目:

        给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树:  root = [6,2,8,0,4,7,9,null,null,3,5]

示例 1:

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点 2 和节点 8 的最近公共祖先是 6。

OJ链接:235. 二叉搜索树的最近公共祖先

        4.1 使用遍历方式实现二叉搜索树的最近公共祖先

        具体思路为:若 p 与 q 在当前节点的左右子树,那么该节点就是该 q 与 p 的公共最近的祖先;若 p 与 q 在当前节点的同一侧(都在该当前节点的左子树或者右子树),则需要继续往下遍历,当 node.val < p.val && node.val < q.val 或者 node.val > p.val && node.val > q.val 都需要继续遍历,直到跳出循环后,则当前节点 node 就是该 p 与 q 的公共最近节点。

代码如下:

//二叉搜索树的最近祖宗public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {TreeNode a = root;while(p.val < a.val && q.val < a.val || p.val > a.val && q.val > a.val) {if(p.val < a.val) {a = a.left;}else {a = a.right;}}return a;}

        5.0 本篇二叉搜索树实现 LeetCode 经典题的完整代码

import java.util.Stack;public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) { this.val = val; }TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}//使用递归实现验证二叉树private long prev = Long.MIN_VALUE;public boolean isValidBST(TreeNode root) {if(root == null) {return true;}boolean l = isValidBST(root.left);if (!l) {return false;}if(prev >= root.val) {return false;}prev = root.val;return isValidBST(root.right);}//使用遍历实现验证二叉树public boolean isValidBST2(TreeNode node) {Stack<TreeNode> stack = new Stack<>();TreeNode p = node;long prev = Long.MIN_VALUE;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {TreeNode pop = stack.pop();if(pop.val <= prev) {return false;}prev = pop.val;p = pop.right;}}return true;}//使用递归求二叉搜索树的范围和public int rangeSum(TreeNode root,int slow, int high) {if(root == null) {return 0;}if(root.val < slow) {return rangeSum(root.right,slow,high);}if(root.val > high) {return rangeSum(root.left,slow,high);}return root.val + rangeSum(root.left,slow,high) + rangeSum(root.right,slow,high);}//使用非递归求二叉搜索树的范围和public int rangeSum2(TreeNode root,int slow,int high) {Stack<TreeNode> stack = new Stack<>();TreeNode p = root;int sum = 0;while(p != null || !stack.isEmpty()) {if(p != null) {stack.push(p);p = p.left;}else {TreeNode pop = stack.pop();if(pop.val > high) {break;}if(pop.val >= slow) {sum += pop.val;}p = pop.right;}}return sum;}//根据前序遍历的结果建树public TreeNode bstFromPreorder(int[] preorder) {TreeNode root = new TreeNode(preorder[0]);for(int i = 1; i < preorder.length; i++) {TreeNode p = new TreeNode(preorder[i]);insert(root,p);}return root;}//使用非递归的方式public void insert(TreeNode root, TreeNode node) {TreeNode p = root;TreeNode parent = null;while(p != null) {if(p.val < node.val) {parent = p;p = p.right;}else if(p.val > node.val) {parent = p;p = p.left;}}if(parent.val > node.val) {parent.left = node;}else {parent.right = node;}}//使用递归的方式public  TreeNode insert(TreeNode node, int val) {if (node == null) {return new TreeNode(val);}if (node.val > val) {node.left = insert(node.left,val);}else {node.right = insert(node.right,val);}return node;}//二叉搜索树的最近祖宗public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {TreeNode a = root;while(p.val < a.val && q.val < a.val || p.val > a.val && q.val > a.val) {if(p.val < a.val) {a = a.left;}else {a = a.right;}}return a;}}

        

        本篇为相关二叉搜索树对于 LeetCode 题目的相关解法,希望对你有所帮助。

这篇关于Java LeetCode篇-二叉搜索树经典解法(实现:二叉搜索树的最近公共祖先、根据前序遍历建树等)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/587175

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法