基于 Laplacian 实现简单的图像模糊检测

2024-01-08 22:48

本文主要是介绍基于 Laplacian 实现简单的图像模糊检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

9b232cb6c0513176117a8800ba61b934.png

pexels-dinnow-9469740.jpg

Part1业务背景

从去年年底开始,我们团队一直在做一款能够给电商商品自动拍照的智能硬件。拍完照后,会将商品的套图在电商平台上进行展示。

对于要展示的商品图片而言,我们对图片本身的质量要求会比较高,例如不能将模糊不清的图片进行展示。因此,需要一种图像模糊检测的方法,便于我们筛选出可用的图片。

我们使用基于 Laplacian 的算法来检测图片是否模糊。调用它比较简单,因为 OpenCV 内置了 Laplacian 函数。

Part2Laplacian 算子

求多元函数的二阶导数的映射被称为 Laplacian 算子,它相当于二阶 Sobel 算子的导数。

Laplacian 算子的定义:

e2fb8ad8bbdd266bdf41c2118af8cca9.png
Laplacian 算子

我们分别对 Laplace 算子 x,y 两个方向的二阶导数进行差分就得到了离散函数的 Laplace 算子。

以 x 方向为例:一阶差分:f'(x) = f(x) - f(x - 1) 二阶差分:f''(x) = f'(x+1) - f'(x) = (f(x + 1) - f(x)) - (f(x) - f(x - 1)) 化简后:f''(x) = f(x - 1) - 2 f(x)) + f(x + 1)

提取前面的系数:[1, -2, 1]

同理,可得 y 方向的系数[1,-2,1]

叠加起来就得到了拉普拉斯矩阵d3b47d6b73e06bbae512c234819d319e.png

也就是拉普拉斯 3x3 卷积核。

Part3图像模糊检测算法

算法的主要思想:先将图像转换成灰度图像,然后单一通道的灰度图像经过刚才计算出来的拉普拉斯 3x3 卷积核计算后会得到一个响应图,最后再计算这个响应图的方差。

基于该方差和按照经验设定的阈值进行比较,就可以判断图像是否模糊。对于同一种类型的商品图片,可以采用同一个阈值。不同的商品、不同环境拍摄的图片可能需要调整阈值。

bool isImageBlurry(cv::Mat& img, double threshold)
{cv::Mat matImageGray;cv::cvtColor(img, matImageGray, COLOR_BGR2GRAY);cv::Mat dst, abs_dst;cv::Laplacian(matImageGray, dst, CV_16S, 3);cv::convertScaleAbs( dst, abs_dst );cv::Mat tmp_m, tmp_sd;double sd = 0;cv::meanStdDev(dst, tmp_m, tmp_sd);sd = tmp_sd.at<double>(0,0); // 方差return ((sd * sd) <= threshold);
}

找一张模糊的图片,写一个简单的例子进行测试

2d48ca2f9ac78a2874c11d2aeaab23a2.png
test.jpeg
using namespace std;
using namespace cv;bool isImageBlurry(cv::Mat& img, double threshold=49.0);int main(int argc,char *argv[])
{String imageName;cout << "Enter the image file name: " << endl;cin >> imageName;// read the imageMat image = imread(imageName);double time = (double)getTickCount();bool result = isImageBlurry(image);time = ((double)getTickCount() - time) / getTickFrequency();cout << "所用时间为:" << time << "s" << endl;cout << "result:" << result << endl;return 0;
}bool isImageBlurry(cv::Mat& img, double threshold)
{cv::Mat matImageGray;cv::cvtColor(img, matImageGray, COLOR_BGR2GRAY);cv::Mat dst, abs_dst;cv::Laplacian(matImageGray, dst, CV_16S, 3);cv::convertScaleAbs( dst, abs_dst );cv::Mat tmp_m, tmp_sd;double m = 0, sd = 0;cv::meanStdDev(dst, tmp_m, tmp_sd);m = tmp_m.at<double>(0,0); sd = tmp_sd.at<double>(0,0);std::cout << "sd * sd: " << sd * sd << std::endl;return ((sd * sd) <= threshold);
}

执行结果:

Enter the image file name: 
test.jpeg
sd * sd: 31.0646
所用时间为:0.0219034s
result:1

可以通过上述程序判断出该图片是模糊的。

最后,我们团队主要使用的语言是 Java/Kotlin,还需要编写一个 jni 来调用该函数。

Part4总结

在无参考图像的情况下,Laplacian 是一种常见的图像模糊检测的方式。除此之外,还可以采用 Brenner、Tenengrad、SMD、SMD2 等等。

Java与Android技术栈】公众号

关注 Java/Kotlin 服务端、桌面端 、Android 、机器学习、端侧智能

更多精彩内容请关注:

这篇关于基于 Laplacian 实现简单的图像模糊检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/585097

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络