使用jieba分析小说太古神王中,男主更爱谁?去文章中找答案吧!#华为云·寻找黑马程序员#

本文主要是介绍使用jieba分析小说太古神王中,男主更爱谁?去文章中找答案吧!#华为云·寻找黑马程序员#,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特大好消息

周三晚上,我媳妇儿就要带着俩小爷去重庆姐姐家玩了,我又可以一个人开心的学习、玩耍了,想着都开心到失眠啊…失眠怎么办?写公众号啊,哈哈。

文本分析

很多时候,我们会去统计一片文章中的高频词汇,以此来作为文章的关键词条,那么词频分析在python中,该用什么模块做?jieba
第一次听到这个词就乐了,一个**“结巴”,帮助我们统计词频…但仔细了解这个模块后,你会发现它的强大。怎么证明?来看看github。
jieba github
19K的star,5000+fork你就知道它多受欢迎了!让我们先来学学
jieba**。

jieba介绍

jieba的github上readme写的非常详细,如果大家喜欢可以去仔细学习:jieba gihub地址。这里挑我们代码需要用到的地方讲解下…
安装: pip install jieba
以下内容引用自jieba github

“结巴”中文分词:做最好的 Python 中文分词组件

分词
  • jieba.cut 方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型
  • jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
  • 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
  • jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用
  • jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
  • jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。
代码示例# encoding=utf-8
import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list))  # 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list))  # 精确模式seg_list = jieba.cut("他来到了网易杭研大厦")  # 默认是精确模式
print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造")  # 搜索引擎模式
print(", ".join(seg_list))
输出:【全模式】:/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】:/ 来到/ 北京/ 清华大学【新词识别】:他, 来到,, 网易, 杭研, 大厦    (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业,, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所,,, 日本, 京都, 大学, 日本京都大学, 深造
设置解析词语

add_word(word, freq=None, tag=None) 添加词语
比如上面的实力,我们想将中国科学院作为一个整体让jieba分析,那么我们可以jieba.add_word(‘中国科学院’)

jieba.load_userdict(file_name) 用户可以自定义分词字典
如果我们有成套的字典来提升词语识别,可以创建一个文本,将这些词语存储在文本中。具体格式如下:

词语、词频(可省略)、词性(可省略)
创新办 3 i
云计算 5
凱特琳 nz
台中

关键字抽取

刚才看到分词,不管我们是使用哪种方式,最终获得的都是迭代器或者的表,那我们如果想无脑输出词频权重较高的top多少次,如何做?
使用import jieba.analyse

import jieba.analysejieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
sentence 为待提取的文本
topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
withWeight 为是否一并返回关键词权重值,默认值为 False
allowPOS 仅包括指定词性的词,默认值为空,即不筛选
jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件

但这种统计过于无脑,更多的情况下,还是要我们自己来配置…

分析什么?

说过了如何分词,获取词频。可我们没有数据,到底该分析什么?分析python书籍未免太过逗比,所以嘛还是分析点有意思的东西吧!前几天看新闻中国的玄幻小说,在老外的眼里简直就是至宝,什么掉下悬崖捡宝、穿越远古修仙、犀利哥重生附身,在我们看来俗到掉渣的剧情,老外看到都觉得是神来之笔!那么今天我们就来分析一部修仙小说吧…个人比较喜欢净无痕的书,绝世武神、太古神王到如今的伏天氏。但最近感觉写的越来越水。所以今天我们就来分析太古神王这部小说吧,貌似它已经拍成电视剧了。怎么获取全本内容?之前写的文章使用Python开发小说下载器,不再为下载小说而发愁就派上用场了,2000+章的小说全本下载。话说刚开始用写好的工具是,平均1秒3章,最近很多朋友反馈工具很慢,进来自己用了下两三秒才一章,难道跟我有关系?还是收敛点的好…边写着文章,手机边下载着,总算完了:
小说下载
那分析什么内容呢,太古神王里面有两个女主叶倾城、长青青儿。那么秦问天到底更爱谁?让我们看看她俩的出场频率吧…

代码实现

只统计主角和两个女主,有些太过无趣,所以咱们多统计点词汇给50个吧…看看会有哪些:

# -*- coding: utf-8 -*-
# @Author   : 王翔
# @JianShu  : 清风Python
# @Date     : 2019/7/24 2:23
# @Software : PyCharm
# @version  :Python 3.7.3
# @File     : DearestGirl.py
import jiebaclass DearestGirl:ROLES = "秦问天 倾城 青儿"def __init__(self):self.result = dict()def add_key_word(self):for user in self.ROLES.split():jieba.add_word(user)def cut_word(self):data = open("太古神王全本.txt", encoding='utf-8').read()jieba_cut = jieba.cut(data)for word in jieba_cut:if word not in self.ROLES.split():continueelse:self.result[word] = self.result.get(word, 0) + 1def sort_words(self):print(sorted(self.result.items(), key=lambda x: x[1], reverse=True))if __name__ == '__main__':main = DearestGirl()main.add_key_word()main.cut_word()main.sort_words()output:
[('秦问天', 35182), ('倾城', 2085), ('青儿', 2028)]

这就懵逼了,这俩女主居然词频这相近,可再看看男主的词频…有一个问题呼之欲出,这部小说是一部男主自恋的小说,他最爱的是自己!通篇都是他…哈哈。
那么这样就完了?不行不行,既然词频都出来了,顺带生成一下词云呗…

wordcloud

今天上班苗妹子还问到了关于这个模块,当然得用用了…
最终代码如下:

# -*- coding: utf-8 -*-
# @Author   : 王翔
# @JianShu  : 清风Python
# @Date     : 2019/7/24 2:23
# @Software : PyCharm
# @version  :Python 3.7.3
# @File     : DearestGirl.py
import jieba
from wordcloud import WordCloud, ImageColorGenerator, STOPWORDS
import numpy as np
from PIL import Imageclass DearestGirl:ROLES = "秦问天 倾城 青儿"def __init__(self):self.result = dict()def add_key_word(self):for user in self.ROLES.split():jieba.add_word(user)def cut_word(self):data = open("太古神王全本.txt", encoding='utf-8').read()jieba_cut = jieba.cut(data)for word in jieba_cut:if word not in self.ROLES.split():continueelse:self.result[word] = self.result.get(word, 0) + 1def sort_words(self):print(sorted(self.result.items(), key=lambda x: x[1], reverse=True))def word_cloud(self):mask = np.array(Image.open('bk.png'))wc = WordCloud(font_path='C:/Windows/Fonts/simhei.ttf',  # 设置字体格式mask=mask,max_words=200,max_font_size=100)wc.generate_from_frequencies(self.result)image_colors = ImageColorGenerator(mask)wc.recolor(color_func=image_colors)wc.to_file('result.jpg')if __name__ == '__main__':main = DearestGirl()main.add_key_word()main.cut_word()main.sort_words()

词云

The End

OK,今天的内容就到这里,如果觉得内容对你有所帮助,欢迎点击文章右下角的“在看”。
期待你关注我的公众号**清风Python**,如果你觉得不错,希望能动动手指转发给你身边的朋友们。

这篇关于使用jieba分析小说太古神王中,男主更爱谁?去文章中找答案吧!#华为云·寻找黑马程序员#的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583891

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录