目标检测阅读总结(一)之RCNN以及NMS

2024-01-08 12:38

本文主要是介绍目标检测阅读总结(一)之RCNN以及NMS,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开始看目标检测方面论文,里面有很多经典,会在这儿记录下论文中的优点和代码中的问题,也会把别人blog比较好的观点总结。

阅读顺序差不多按照: https://github.com/amusi/awesome-object-detection

R-CNN

参考:https://blog.csdn.net/shenxiaolu1984/article/details/51066975

https://blog.csdn.net/briblue/article/details/82012575

 

pipeline:

1. 使用selective search生成1k-2k个候选框;

2. 对于候选区域,提取cnn特征(4096-dim),这里是裁剪出来然后做一个16的padding,然后resize到227*227。(为了让bounding box拥有上下文内容context。)

3. 对于正负样本的分类,对于4096-dim feature接一个svm进行分类。

4. 为了减少识别的错误,在用一个线性回归模型对框进行微调。

4.1. 一个scale变换,对于中心点以及长宽;

4.2 这里的L2正则化很关键;

4.3 组的pair对很重要,不然会导致a hopeless learning problem。这里使用的iou阈值为0.6。

 

3.1. 由于负样本很多,所以会对于负样本使用hard negative mining。

hard negative mining 

R-CNN引用了这篇文章 “Object Detection with Discriminatively Trained Part Based Models.”

由于训练的阶段负样本过多,超过1w个,对于模型来说使用全部的负样本是不可行的,所以需要构建一个既有负样本又有hard negative的样本集合。

Bootstrapping methods:先用负样本组成集合训练,然后收集那些被错误分类的例子,去训练新的模型,这样重复几次。

proposed data-mining methods:为了找到一个属于训练集的小子集,初始的时候用原始的作为一个cache,每一次迭代会移除一些比较简单的样本,增加一些新的比较难的样本。

具体流程如下

1. 先初始一个$C_{t}$ \subseteq $D$, 这里的 D是原来的训练集。

2. 训练,直到参数稳定分出两个集合,一个是错误分类的,一个是正确分类的。

3. 缩小C_{t}, 去除那些被正确分类的,得到集合C_{t^{'}}

4. 增大C_{t+1},把 C_{t^{'}}和一些属于 D的样本形成并集,得到新一轮的子集C_{t+1}

Non-Maximum-Suppression

非极大值抑制,在目标检测,回归了很多bounding boxes出来之后,要最终确定哪一个是最终使用的时候,需要用nms进行bounding boxes的剔除。

具体过程:对于图片每一个类别,先找到置信度(网络predict的概率)最大的值,先对于这一类别的其他框做iou的操作,然后有一个nms的iou超参,高于设定iou的就被剔除。

如此对于每一个类别进行重复操作,这样排除了很多置信度低的框。

下面贴一下自己写的nms代码,并简单分析一下。

#include <iostream>
#include <string>
#include <set>
#include <cmath>
#include <vector>
#include <tuple>
using namespace std;
float iou_cal(vector<float> box1, vector<float> box2){float right_x = min(box1[2],box2[2]);float right_y = min(box1[3],box2[3]);float left_x = max(box1[2],box2[2]);float left_y = max(box1[3],box2[3]);float overlap = fmax(0.,left_x-right_x) * fmax(0.,left_y-right_y);float area_sum = (box1[2]-box1[0])*(box1[3]-box1[1])+(box2[2]-box2[0])*(box2[3]-box2[1]);return overlap/(area_sum-overlap);
}
tuple<vector<float>,int> find_base(vector<vector<float> > boxes){vector<float> boxes_max{-1,-1,-1,-1};float max_pb = 0.;int index;for(int i = 0; i<boxes.size();i++){if(boxes[i][0]>max_pb){max_pb = boxes[i][0];boxes_max[0] = boxes[i][1];boxes_max[1] = boxes[i][2];boxes_max[2] = boxes[i][3];boxes_max[3] = boxes[i][4];index = i;}}return make_tuple(boxes_max,index);}
void nms(vector<vector<float> > &boxes,float iou_value){ // single classtuple<vector<float>,int> box_value;vector<float> boxes_base;float iou = 0.0;int index;box_value = find_base(boxes);boxes_base = get<0>(box_value);index = get<1>(box_value);for(int i=0;i<boxes.size();i++){if(i!=index){iou = iou_cal(boxes_base,boxes[i]);if(iou>iou_value){boxes.erase(boxes.begin()+i);}}}
}
void print_boxes(vector<vector<float> > boxes){for(int i=0;i<boxes.size();i++){for(int j=0;j<boxes[0].size();j++){cout << boxes[i][j] << " " ;}cout << endl;}
}int main(int argc, const char * argv[]) {vector<float> box1{0.6,100,98,300,400};vector<float> box2{0.7,85,60,250,500};vector<float> box3{0.8,70,49,200,350};vector<vector<float> > boxes;boxes.push_back(box1);boxes.push_back(box2);boxes.push_back(box3);print_boxes(boxes);nms(boxes,0.5);print_boxes(boxes);return 0;
}

上面代码考虑单一类别的情况,多类别加一个for循环即可,首先是要找到置信度最大的候选框,通过find_base函数。之后进行for循环,对于其他候选框进行判断,计算iou占比,如果小于设定的阈值(这里设定的为0.5)那么就剔除这个框。

tip:c++语法要注意nms的输入应为引用。

这篇关于目标检测阅读总结(一)之RCNN以及NMS的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583486

相关文章

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Rust格式化输出方式总结

《Rust格式化输出方式总结》Rust提供了强大的格式化输出功能,通过std::fmt模块和相关的宏来实现,主要的输出宏包括println!和format!,它们支持多种格式化占位符,如{}、{:?}... 目录Rust格式化输出方式基本的格式化输出格式化占位符Format 特性总结Rust格式化输出方式

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学