【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步

本文主要是介绍【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax概述 

【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax快速入门 

 【大数据进阶第三阶段之Datax学习笔记】阿里云开源离线同步工具Datax类图

【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具Datax实现数据同步 

1、准备工作:

  • JDK(1.8 以上,推荐 1.8)
  • Python(23 版本都可以)
  • Apache Maven 3.x(Compile DataX)(手动打包使用,使用 tar 包方式不需要安装)
主机名操作系统IP 地址软件包
MySQL-1CentOS 7.4192.168.1.1jdk-8u181-linux-x64.tar.gz datax.tar.gz
MySQL-2CentOS 7.4192.168.1.2

2、安装 JDK:

下载地址:Java Archive Downloads - Java SE 8(需要创建 Oracle 账号)

[root@MySQL-1 ~]# ls
anaconda-ks.cfg  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# tar zxf jdk-8u181-linux-x64.tar.gz 
[root@DataX ~]# ls
anaconda-ks.cfg  jdk1.8.0_181  jdk-8u181-linux-x64.tar.gz
[root@MySQL-1 ~]# mv jdk1.8.0_181 /usr/local/java
[root@MySQL-1 ~]# cat <<END >> /etc/profile
export JAVA_HOME=/usr/local/java
export PATH=$PATH:"$JAVA_HOME/bin"
END
[root@MySQL-1 ~]# source /etc/profile
[root@MySQL-1 ~]# java -version
  • 因为 CentOS 7 上自带 Python 2.7 的软件包,所以不需要进行安装。

3、Linux 上安装 DataX 软件 

[root@MySQL-1 ~]# wget http://datax-opensource.oss-cn-hangzhou.aliyuncs.com/datax.tar.gz
[root@MySQL-1 ~]# tar zxf datax.tar.gz -C /usr/local/
[root@MySQL-1 ~]# rm -rf /usr/local/datax/plugin/*/._*  
  • 当未删除时,可能会输出:[/usr/local/datax/plugin/reader/._drdsreader/plugin.json] 不存在. 请检查您的配置文件.

验证

[root@MySQL-1 ~]# cd /usr/local/datax/bin
[root@MySQL-1 ~]# python datax.py ../job/job.json

输出

2021-12-13 19:26:28.828 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-13 19:26:28.829 [job-0] INFO  StandAloneJobContainerCommunicator - Total 100000 records, 2600000 bytes | Speed 253.91KB/s, 10000 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.060s |  All Task WaitReaderTime 0.068s | Percentage 100.00%
2021-12-13 19:26:28.829 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-13 19:26:18
任务结束时刻                    : 2021-12-13 19:26:28
任务总计耗时                    :                 10s
任务平均流量                    :          253.91KB/s
记录写入速度                    :          10000rec/s
读出记录总数                    :              100000
读写失败总数                    :                   0

4、DataX 基本使用

查看 streamreader \--> streamwriter 的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r streamreader -w streamwriter

输出

DataX (DATAX-OPENSOURCE-3.0), From Alibaba !
Copyright (C) 2010-2017, Alibaba Group. All Rights Reserved.Please refer to the streamreader document:https://github.com/alibaba/DataX/blob/master/streamreader/doc/streamreader.md Please refer to the streamwriter document:https://github.com/alibaba/DataX/blob/master/streamwriter/doc/streamwriter.md Please save the following configuration as a json file and  usepython {DATAX_HOME}/bin/datax.py {JSON_FILE_NAME}.json 
to run the job.{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [], "sliceRecordCount": ""}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "", "print": true}}}], "setting": {"speed": {"channel": ""}}}
}

根据模板编写 json 文件

[root@MySQL-1 ~]# cat <<END > test.json
{"job": {"content": [{"reader": {"name": "streamreader", "parameter": {"column": [        # 同步的列名 (* 表示所有){"type":"string","value":"Hello."},{"type":"string","value":"河北彭于晏"},], "sliceRecordCount": "3"     # 打印数量}}, "writer": {"name": "streamwriter", "parameter": {"encoding": "utf-8",     # 编码"print": true}}}], "setting": {"speed": {"channel": "2"         # 并发 (即 sliceRecordCount * channel = 结果)}}}
}

输出:(要是复制我上面的话,需要把 # 带的内容去掉)

image.png

5、安装 MySQL 数据库

分别在两台主机上安装:

[root@MySQL-1 ~]# yum -y install mariadb mariadb-server mariadb-libs mariadb-devel   
[root@MySQL-1 ~]# systemctl start mariadb												# 安装 MariaDB 数据库
[root@MySQL-1 ~]# mysql_secure_installation												# 初始化	
NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDBSERVERS IN PRODUCTION USE!  PLEASE READ EACH STEP CAREFULLY!Enter current password for root (enter for none):	     	# 直接回车
OK, successfully used password, moving on...
Set root password? [Y/n] y                       	 	 	# 配置 root 密码
New password: 
Re-enter new password: 
Password updated successfully!
Reloading privilege tables..... Success!
Remove anonymous users? [Y/n] y                			 	# 移除匿名用户... skipping.
Disallow root login remotely? [Y/n] n            		 	# 允许 root 远程登录... skipping.
Remove test database and access to it? [Y/n] y 		     	# 移除测试数据库... skipping.
Reload privilege tables now? [Y/n] y             	     	# 重新加载表... Success!

1)准备同步数据(要同步的两台主机都要有这个表)

MariaDB [(none)]> create database `course-study`;
Query OK, 1 row affected (0.00 sec)MariaDB [(none)]> create table `course-study`.t_member(ID int,Name varchar(20),Email varchar(30));
Query OK, 0 rows affected (0.00 sec)

在这里插入图片描述
因为是使用 DataX 程序进行同步的,所以需要在双方的数据库上开放权限:

grant all privileges on *.* to root@'%' identified by '123123';
flush privileges;

2)创建存储过程:

DELIMITER $$
CREATE PROCEDURE test()
BEGIN
declare A int default 1;
while (A < 3000000)do
insert into `course-study`.t_member values(A,concat("LiSa",A),concat("LiSa",A,"@163.com"));
set A = A + 1;
END while;
END $$
DELIMITER ;

在这里插入图片描述
3)调用存储过程(在数据源配置,验证同步使用):

call test();

6、通过 DataX 实 MySQL 数据同步

1)生成 MySQL 到 MySQL 同步的模板:

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py -r mysqlreader -w mysqlwriter
{"job": {"content": [{"reader": {"name": "mysqlreader",							# 读取端"parameter": {"column": [], 								# 需要同步的列 (* 表示所有的列)"connection": [{"jdbcUrl": [], 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接用户"username": "", 							# 连接密码"where": ""									# 描述筛选条件}}, "writer": {"name": "mysqlwriter",							# 写入端"parameter": {"column": [], 								# 需要同步的列"connection": [{"jdbcUrl": "", 						# 连接信息"table": []							# 连接表}], "password": "", 							# 连接密码"preSql": [], 								# 同步前. 要做的事"session": [], "username": "",								# 连接用户 "writeMode": ""								# 操作类型}}}], "setting": {"speed": {"channel": ""										# 指定并发数}}}
}

2)编写 json 文件:

[root@MySQL-1 ~]# vim install.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}

3)验证

[root@MySQL-1 ~]# python /usr/local/datax/bin/datax.py install.json

输出:

2021-12-15 16:45:15.120 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-15 16:45:15.120 [job-0] INFO  StandAloneJobContainerCommunicator - Total 2999999 records, 107666651 bytes | Speed 2.57MB/s, 74999 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 82.173s |  All Task WaitReaderTime 75.722s | Percentage 100.00%
2021-12-15 16:45:15.124 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-15 16:44:32
任务结束时刻                    : 2021-12-15 16:45:15
任务总计耗时                    :                 42s
任务平均流量                    :            2.57MB/s
记录写入速度                    :          74999rec/s
读出记录总数                    :             2999999
读写失败总数                    :                   0

你们可以在目的数据库进行查看,是否同步完成。
在这里插入图片描述

  • 上面的方式相当于是完全同步,但是当数据量较大时,同步的时候被中断,是件很痛苦的事情;
  • 所以在有些情况下,增量同步还是蛮重要的。

7、使用 DataX 进行增量同步

使用 DataX 进行全量同步和增量同步的唯一区别就是:增量同步需要使用 where 进行条件筛选。(即,同步筛选后的 SQL)


1)编写 json 文件:

[root@MySQL-1 ~]# vim where.json
{"job": {"content": [{"reader": {"name": "mysqlreader", "parameter": {"username": "root","password": "123123","column": ["*"],"splitPk": "ID","where": "ID <= 1888","connection": [{"jdbcUrl": ["jdbc:mysql://192.168.1.1:3306/course-study?useUnicode=true&characterEncoding=utf8"], "table": ["t_member"]}]}}, "writer": {"name": "mysqlwriter", "parameter": {"column": ["*"], "connection": [{"jdbcUrl": "jdbc:mysql://192.168.1.2:3306/course-study?useUnicode=true&characterEncoding=utf8","table": ["t_member"]}], "password": "123123","preSql": ["truncate t_member"], "session": ["set session sql_mode='ANSI'"], "username": "root", "writeMode": "insert"}}}], "setting": {"speed": {"channel": "5"}}}
}
  • 需要注意的部分就是:where(条件筛选) 和 preSql(同步前,要做的事) 参数。

2)验证:

[root@MySQL-1 ~]# python /usr/local/data/bin/data.py where.json

输出:

2021-12-16 17:34:38.534 [job-0] INFO  JobContainer - PerfTrace not enable!
2021-12-16 17:34:38.534 [job-0] INFO  StandAloneJobContainerCommunicator - Total 1888 records, 49543 bytes | Speed 1.61KB/s, 62 records/s | Error 0 records, 0 bytes |  All Task WaitWriterTime 0.002s |  All Task WaitReaderTime 100.570s | Percentage 100.00%
2021-12-16 17:34:38.537 [job-0] INFO  JobContainer - 
任务启动时刻                    : 2021-12-16 17:34:06
任务结束时刻                    : 2021-12-16 17:34:38
任务总计耗时                    :                 32s
任务平均流量                    :            1.61KB/s
记录写入速度                    :             62rec/s
读出记录总数                    :                1888
读写失败总数                    :                   0

目标数据库上查看:
在这里插入图片描述
3)基于上面数据,再次进行增量同步:

主要是 where 配置:"where": "ID > 1888 AND ID <= 2888"						# 通过条件筛选来进行增量同步
同时需要将我上面的 preSql 删除(因为我上面做的操作时 truncate 表)

在这里插入图片描述

这篇关于【大数据进阶第三阶段之Datax学习笔记】使用阿里云开源离线同步工具DataX 实现数据同步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/583418

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC