使用scrapy再次爬取猫眼前100榜单电影

2024-01-08 09:08

本文主要是介绍使用scrapy再次爬取猫眼前100榜单电影,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前提:

记得去年5月份左右的时候写过一篇使用Requests方法来爬取猫眼榜单电影的文章,今天偶然翻到了这篇文章,又恰巧最近在学scrapy框架进行爬虫,于是决定饶有兴趣的使用scrapy框架再次进行爬取。

说明:

如图所示,这次爬取的猫眼榜单网页链接内容大致如下(图1-1),这次需要爬取的信息分别是电影名称、主演、上映时间、电影评分和电影图片链接,然后将获取的电影图片下载保存到本地,如图1-2所示。

                                                                                                                               图1-1

                                

                                                                                                                               图1-2 

爬虫解析:

1、首先使用谷歌浏览器打开网页,然后按下键盘“F12”进入开发者工具调试界面,选择左上角的箭头图标,然后鼠标移至一个电影名处,就可以定位到该元素源代码的具体位置,定位到元素的源代码之后,可以从源代码中读出改元素的属性,如图2-1所示: 

                                                          

                                                                                                                              图2-1

2、从上图可以看出,我们需要的信息隐藏在这个节点和属性值中,接下来就是如何获取到这些节点信息和属性值的问题,这里最简答的方法就是选择一个节点后,右击鼠标选择“Copy-Copy Xpath”,通过xpath方法来定位元素来获取信息。具体的xpath定位元素的使用方法,可自行百度进行学习。

代码:

spider文件

# -*- coding: utf-8 -*-
import scrapy
from maoyan.items import MaoyanItem
import urllibclass Top100Spider(scrapy.Spider):name = 'top_100'allowed_domains = ['trade.maoyan.com']start_urls = ['https://trade.maoyan.com/board/4']def parse(self, response):#passdd_list = response.xpath('//dl[@class="board-wrapper"]/dd')for dd in dd_list:item = MaoyanItem()item['name'] = dd.xpath('./a/@title').extract_first()  #电影名称item['starring'] = dd.xpath('./div/div/div/p[2]/text()').extract_first() #电影主演if item['starring'] is not None:item['starring'] = item['starring'].strip()item['releasetime']  = dd.xpath('./div/div/div/p[3]/text()').extract_first() #电影上映时间#item['image'] = 'https://trade.maoyan.com/' + dd.xpath('./a/@href').extract_first() #电影图片score_one = dd.xpath('./div/div/div[2]/p/i[1]/text()').extract_first()  #评分前半部分score_two = dd.xpath('./div/div/div[2]/p/i[2]/text()').extract_first()    #评分后半部分item['score'] = score_one + score_two#print(item)url = 'https://trade.maoyan.com' + dd.xpath('./a/@href').extract_first() #电影详情页yield scrapy.Request(url,callback= self.parse_datail,meta= {'item':item})#获取下一页网页信息next_page = response.xpath('//div[@class="pager-main"]/ul/li/a[contains(text(), "下一页")]/@href').extract_first()if next_page is not None:print('当前爬取的网页链接是:%s'%next_page)new_ilnk = urllib.parse.urljoin(response.url, next_page)yield scrapy.Request(new_ilnk,callback=self.parse,)def parse_datail(self,response):item = response.meta['item']item['image'] = response.xpath('//div[@class ="celeInfo-left"]/div/img/@src').extract_first() #获取图片链接yield item# print('当前获取的信息')# print(item)

  item.py代码

# -*- coding: utf-8 -*-# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.htmlimport scrapyclass MaoyanItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()#passname = scrapy.Field()   #电影名starring  = scrapy.Field()  #主演releasetime = scrapy.Field()  #上映时间image  = scrapy.Field()  #电影图片链接score = scrapy.Field()   #电影评分


pipelines.py代码

# -*- coding: utf-8 -*-# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.htmlfrom scrapy.pipelines.images import ImagesPipeline
import scrapy
from scrapy.exceptions import DropItem# class MaoyanPipeline(object):
#     def process_item(self, item, spider):
#         return item#使用ImagesPipeline进行图片下载class MaoyanPipeline(ImagesPipeline):def get_media_requests(self, item, info):print('item-iamge是', item['image'])yield scrapy.Request(item['image'])def item_completed(self, results, item, info):image_paths = [x['path'] for ok, x in results if ok]if not image_paths:raise DropItem("Item contains no images")return item

settings.py代码

# -*- coding: utf-8 -*-# Scrapy settings for maoyan project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html
import random
BOT_NAME = 'maoyan'SPIDER_MODULES = ['maoyan.spiders']
NEWSPIDER_MODULE = 'maoyan.spiders'# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'maoyan (+http://www.yourdomain.com)'# Obey robots.txt rules
ROBOTSTXT_OBEY = FalseUSER_AGENTS_LIST = ["Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/22.0.1207.1 Safari/537.1","Mozilla/5.0 (X11; CrOS i686 2268.111.0) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1092.0 Safari/536.6","Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.6 (KHTML, like Gecko) Chrome/20.0.1090.0 Safari/536.6","Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/19.77.34.5 Safari/537.1","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.9 Safari/536.5","Mozilla/5.0 (Windows NT 6.0) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.36 Safari/536.5","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3","Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3","Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1063.0 Safari/536.3","Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1062.0 Safari/536.3","Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3","Mozilla/5.0 (Windows NT 6.1) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.1 Safari/536.3","Mozilla/5.0 (Windows NT 6.2) AppleWebKit/536.3 (KHTML, like Gecko) Chrome/19.0.1061.0 Safari/536.3","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24","Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24"]
USER_AGENT = random.choice(USER_AGENTS_LIST)
DEFAULT_REQUEST_HEADERS = {'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8','Accept-Language': 'en',# 'User-Agent':"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",'User-Agent':USER_AGENT
}IMAGES_STORE = 'D:\\MaoYan'    #文件保存路径

总结:

以上就是使用scrapy进行爬取猫眼前100榜单电影的方法,方法不是很难,主要难点还是在使用xpath进行元素定位获取数据方面,最后电影爬取成功后,就是去慢慢欣赏的时候 了,哈哈,祝各位周末愉快!                                                                                                       

                                                                                                                                 

 

 

这篇关于使用scrapy再次爬取猫眼前100榜单电影的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582962

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念