秋招复习之堆

2024-01-08 02:52
文章标签 秋招 复习 之堆

本文主要是介绍秋招复习之堆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

堆的常用操作

堆的实现(大根堆)

1.   堆的存储与表示

2.   访问堆顶元素

3.   元素入堆

4.   堆顶元素出堆

Top-k 问题

方法一:遍历选择

方法二:排序

方法三:堆

总结


前言

秋招复习之堆。


「堆 heap」是一种满足特定条件的完全二叉树,主要可分为两种类型,如图所示。

  • 「小顶堆 min heap」:任意节点的值 ≤ 其子节点的值。
  • 「大顶堆 max heap」:任意节点的值 ≥ 其子节点的值。

堆作为完全二叉树的一个特例,具有以下特性。

  • 最底层节点靠左填充其他层的节点都被填满
  • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
  • 对于大顶堆(小顶堆),堆顶元素(根节点)的值是最大(最小)的。

堆的常用操作

许多编程语言提供的是「优先队列 priority queue」,这是一种抽象的数据结构,定义为具有优先级排序的队列。

实际上,堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。

在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。

类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag 或修改 Comparator 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:

/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1/* 获取堆大小 */
int size = maxHeap.size();/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1/* 获取堆大小 */
int size = maxHeap.size();/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());

堆的实现(大根堆)

1.   堆的存储与表示

完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆

 将索引映射公式封装成函数

/* 获取左子节点的索引 */
int left(int i) {return 2 * i + 1;
}/* 获取右子节点的索引 */
int right(int i) {return 2 * i + 2;
}/* 获取父节点的索引 */
int parent(int i) {return (i - 1) / 2; // 向下整除
}
/* 获取左子节点的索引 */
int left(int i) {return 2 * i + 1;
}/* 获取右子节点的索引 */
int right(int i) {return 2 * i + 2;
}/* 获取父节点的索引 */
int parent(int i) {return (i - 1) / 2; // 向下整除
}

2.   访问堆顶元素

/* 访问堆顶元素 */
int peek() {return maxHeap.get(0);
}
/* 访问堆顶元素 */
int peek() {return maxHeap[0];
}

3.   元素入堆

给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏,因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为「堆化 heapify」。

考虑从入堆节点开始,从底至顶执行堆化。如图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。(就是一直和父比较,大就换)

设节点总数为 n ,则树的高度为 O(log⁡N) 。由此可知,堆化操作的循环轮数最多为  O(log⁡N) ,元素入堆操作的时间复杂度为  O(log⁡N) 。

/* 元素入堆 */
void push(int val) {// 添加节点maxHeap.add(val);// 从底至顶堆化siftUp(size() - 1);
}/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {while (true) {// 获取节点 i 的父节点int p = parent(i);// 当“越过根节点”或“节点无须修复”时,结束堆化if (p < 0 || maxHeap.get(i) <= maxHeap.get(p))break;// 交换两节点swap(i, p);// 循环向上堆化i = p;}
}
/* 元素入堆 */
void push(int val) {// 添加节点maxHeap.push_back(val);// 从底至顶堆化siftUp(size() - 1);
}/* 从节点 i 开始,从底至顶堆化 */
void siftUp(int i) {while (true) {// 获取节点 i 的父节点int p = parent(i);// 当“越过根节点”或“节点无须修复”时,结束堆化if (p < 0 || maxHeap[i] <= maxHeap[p])break;// 交换两节点swap(maxHeap[i], maxHeap[p]);// 循环向上堆化i = p;}
}

4.   堆顶元素出堆

堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。

  1. 交换堆顶元素与堆底元素(交换根节点与最右叶节点)。
  2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,因此实际上删除的是原来的堆顶元素)。
  3. 从根节点开始,从顶至底执行堆化

如图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。

与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(log⁡n) 。代码如下所示:

/* 元素出堆 */
int pop() {// 判空处理if (isEmpty())throw new IndexOutOfBoundsException();// 交换根节点与最右叶节点(交换首元素与尾元素)swap(0, size() - 1);// 删除节点int val = maxHeap.remove(size() - 1);// 从顶至底堆化siftDown(0);// 返回堆顶元素return val;
}/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = left(i), r = right(i), ma = i;if (l < size() && maxHeap.get(l) > maxHeap.get(ma))ma = l;if (r < size() && maxHeap.get(r) > maxHeap.get(ma))ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i)break;// 交换两节点swap(i, ma);// 循环向下堆化i = ma;}
}
/* 元素出堆 */
void pop() {// 判空处理if (isEmpty()) {throw out_of_range("堆为空");}// 交换根节点与最右叶节点(交换首元素与尾元素)swap(maxHeap[0], maxHeap[size() - 1]);// 删除节点maxHeap.pop_back();// 从顶至底堆化siftDown(0);
}/* 从节点 i 开始,从顶至底堆化 */
void siftDown(int i) {while (true) {// 判断节点 i, l, r 中值最大的节点,记为 maint l = left(i), r = right(i), ma = i;if (l < size() && maxHeap[l] > maxHeap[ma])ma = l;if (r < size() && maxHeap[r] > maxHeap[ma])ma = r;// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出if (ma == i)break;swap(maxHeap[i], maxHeap[ma]);// 循环向下堆化i = ma;}
}

Top-k 问题

Q:给定一个长度为 n的无序数组 nums ,请返回数组中最大的 k个元素。

方法一:遍历选择

其时间复杂度趋向于O(n2) ,非常耗时。

 当 k=n 时,可以得到完整的有序序列,此时等价于“选择排序”算法。

方法二:排序

如图所示,我们可以先对数组 nums 进行排序,再返回最右边的 k 个元素,时间复杂度为 O(nlog⁡n) 。

显然,该方法“超额”完成任务了,因为我们只需找出最大的k个元素即可,而不需要排序其他元素。

方法三:堆

可以基于堆更加高效地解决 Top-k 问题,流程如图所示。

  1. 初始化一个小顶堆,其堆顶元素最小。
  2. 先将数组的前 k 个元素依次入堆。
  3. 从第 k+1 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
  4. 遍历完成后,堆中保存的就是最大k 个元素。

天才!!!

/* 基于堆查找数组中最大的 k 个元素 */
Queue<Integer> topKHeap(int[] nums, int k) {// 初始化小顶堆Queue<Integer> heap = new PriorityQueue<Integer>();// 将数组的前 k 个元素入堆for (int i = 0; i < k; i++) {heap.offer(nums[i]);}// 从第 k+1 个元素开始,保持堆的长度为 kfor (int i = k; i < nums.length; i++) {// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆if (nums[i] > heap.peek()) {heap.poll();heap.offer(nums[i]);}}return heap;
}
/* 基于堆查找数组中最大的 k 个元素 */
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {// 初始化小顶堆priority_queue<int, vector<int>, greater<int>> heap;// 将数组的前 k 个元素入堆for (int i = 0; i < k; i++) {heap.push(nums[i]);}// 从第 k+1 个元素开始,保持堆的长度为 kfor (int i = k; i < nums.size(); i++) {// 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆if (nums[i] > heap.top()) {heap.pop();heap.push(nums[i]);}}return heap;
}

总共执行了 n轮入堆和出堆,堆的最大长度为 k ,因此时间复杂度为 O(nlog⁡k) 。该方法的效率很高,当 k 较小时,时间复杂度趋向 O(n) ;当 n 较大时,时间复杂度不会超过 O(nlog⁡n) 。

另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 k个元素的动态更新。


总结

  • 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
  • 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
  • 堆的常用操作及其对应的时间复杂度包括:元素入堆 O(log⁡n)、堆顶元素出堆 O(log⁡n) 和访问堆顶元素 O(1) 等。
  • 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
  • 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
  • 输入 n 个元素并建堆的时间复杂度可以优化至 O(n) ,非常高效。
  • Top-k 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为 O(nlog⁡K) 。

这篇关于秋招复习之堆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/582109

相关文章

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

【秋招笔试】9.07米哈游秋招改编题-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集 100+ 套笔试题,笔试真题 会在第一时间跟新 🍄 题面描述等均已改编,如果和你笔试题看到的题面描述

2018秋招C/C++面试题总结

博主从8月中旬开始大大小小面试了十几家公司,至今也许是告一段落吧,希望后面会有好结果,因此总结记录一些C/C++方向常见的问题。和大家一起学习! 参考了互联网的各种资源,自己尝试归类整理,谢谢~ 一、C和C++的区别是什么? C是面向过程的语言,C++是在C语言的基础上开发的一种面向对象编程语言,应用广泛。 C中函数不能进行重载,C++函数可以重载 C++在C的基础上增添类,C是一个结构

计算机基础知识复习9.6

点对点链路:两个相邻节点通过一个链路相连,没有第三者 应用:PPP协议,常用于广域网 广播式链路:所有主机共享通信介质 应用:早期的总线以太网,无线局域网,常用于局域网 典型拓扑结构:总线型 星型(逻辑总线型) 介质访问控制  静态划分信道 信道划分介质访问控制 频分多路复用FDM 时分多路复用TDM 波分多路复用WDM 码分多路复用CDM 动态分配信道 轮询访问介质访问控

大厂算法例题解之网易2018秋招笔试真题 (未完)

1、字符串碎片 【题目描述】一个由小写字母组成的字符串可以看成一些同一字母的最大碎片组成的。例如,“aaabbaaac” 是由下面碎片组成的:‘aaa’,‘bb’,‘c’。牛牛现在给定一个字符串,请你帮助计算这个字符串的所有碎片的 平均长度是多少。 输入描述: 输入包括一个字符串 s,字符串 s 的长度 length(1 ≤ length ≤ 50),s 只含小写字母(‘a’-‘z’) 输出描述

【秋招笔试】9.07美团秋招改编题(研发岗)

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集 100+ 套笔试题,笔试真题 会在第一时间跟新 🍄 题面描述等均已改编,如果和你笔试题看到的题面描述

【抽代复习笔记】28-群(二十二):四道子群例题

例1:证明,循环群的子群是循环群。 证:设G = (a),H ≤ G。 (1)若H = {e},则H是一阶循环群; (2)设H至少包含2个元素,即设H = {...,a^(-k),a^(-j),a^(-i),a^0,a^i,a^j,a^k,...}, 其中a^i是H中正指数最小的元素,0<i<j<k, 下证a^i是H的生成元: 对任意的a^t∈H(t∈Z),存在q∈Z,使得t = qi

西方社会学理论教程复习重点

一.名词解释 1.社会静力学:旨在揭示人类社会的基本秩序。它从社会的横断面,静态的考察人类社会的结构和制度,寻找确立和维护人类社会的共存和秩序的原则。 2.社会动力学:纵观人类理性和人类社会发展的先后必要阶段,所叙述的是这一基本秩序在达到实证主义这一最终阶段之前所经过的曲折历程。 3.社会事实:一切行为方式,不论它是固定的还是不固定的,凡是能从外部给予个人以约束的,或者说是普遍存在于该社会各

完整版自考西方文论选复习笔记资料

西方文论选读复习资料 1.柏拉图:古希腊哲学家,苏格拉底的学生。公园前387年在雅典城外建立学园开始授徒讲学,撰写对话。柏拉图的作品即《柏拉图文艺对话集》中讨论美学和文艺理论问题较多的有:《大希庇阿斯》、《伊安》、《高吉阿斯》、《会饮》、《斐德若》、《理想国》、《斐利布斯》、《法律》等。 ▲柏拉图《伊安》和《斐若德》内容:主要阐述了"迷狂说"和"灵魂回忆说":柏拉图认为,高明的诗人都是凭灵