实战:使用py2neo和pandas处理海事数据

2024-01-07 19:18

本文主要是介绍实战:使用py2neo和pandas处理海事数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海事数据的格式

标签:
ship_ShipName,ship_MMSI,ship_BuildDate,ship_ShipTypeGroup,ship_ShipTypeLevel5SubGroup,ship_ShipType,ship_GroupCompany,ship_GroupCompanyCountry,ship_OperatorCompany,ship_OperatorCompanyCountry,ship_CountryOfEconomicBenefit,ship_DeadWeight,ship_GrossTonnage,ship_LengthLOA,ship_MouldWidth,ship_Draught,ship_LiquidCapacity

首先使用excel根据标签中的如下五个类别创建三元组形成ships.csv文件:

  1. ship_GroupCompany,
  2. ship_GroupCompanyCountry,
  3. ship_OperatorCompany,
  4. ship_OperatorCompanyCountry,
  5. ship_CountryOfEconomicBenefit

ships.csv文件的格式如下图:
在这里插入图片描述
有了三元组和原表格我们可以很方便添加数据到neo4j的数据库中。

函数

  1. createNode:在neo4j中创建节点
  2. createRelationship:在neo4j中创建节点的关系
  3. matchNode:在neo4j中匹配数据
  4. get_ship_properties:得到所有船的属性
  5. csv2df:将csv转为df
  6. df2neo:将df(从df中提取的数据)转为neo4j

代码

from py2neo import *
import os
import pandas as pd
import numpy as np# 数据库
graph = Graph('http://localhost:7474', username='neo4j', password='myneo4j')# 创建节点
def createNode(m_graph, m_label, m_attrs):# m_n = "_.name=" + "\'" + m_attrs['name'] + "\'"m_n = Noneif m_label == 'SHIP':m_n = "_.MMSI=" + "\'" + m_attrs['MMSI'] + "\'"elif m_label == 'COMPANY' or m_label == 'COUNTRY/REGION':m_n = "_.Name=" + "\'" + m_attrs['Name'] + "\'"matcher = NodeMatcher(m_graph)re_value = matcher.match(m_label).where(m_n).first()print(re_value)if re_value is None:m_node = Node(m_label, **m_attrs)n = graph.create(m_node)return n# print('Fail to create Node!!')return None# 创建两个节点的关系,如果节点不存在就不创建关系
def createRelationship(m_graph, m_label1, m_attrs1, m_label2, m_attrs2, m_r_name):reValue1 = matchNode(m_graph, m_label1, m_attrs1)reValue2 = matchNode(m_graph, m_label2, m_attrs2)if reValue1 is None or reValue2 is None:# print('reValue1: ', reValue1, 'reValue2: ', reValue2)# print('Fail to create relationship!!')return Falsem_r = Relationship(reValue1, m_r_name, reValue2)n = graph.create(m_r)return n# 查询节点,按照ID查询,无返回None
# def matchNodeById(m_graph, m_id):
#    matcher = NodeMatcher(m_graph)
#    re_value = matcher.get(m_id)
#    return re_value# 查询节点,按照name查询,无返回None
def matchNode(m_graph, m_label, m_attrs):# m_n = "_.name=" + "\'" + m_attrs['name'] + "\'"m_n = Noneif m_label == 'SHIP':m_n = "_.MMSI=" + "\'" + m_attrs['MMSI'] + "\'"elif m_label == 'COMPANY' or m_label == 'COUNTRY/REGION':m_n = "_.Name=" + "\'" + m_attrs['Name'] + "\'"# print(m_n)matcher = NodeMatcher(m_graph)re_value = matcher.match(m_label).where(m_n).first()return re_value# 查询节点,按照标签查询,无返回None
# def matchNodeByLabel(m_graph, m_label):
#     matcher = NodeMatcher(m_graph)
#     re_value = matcher.match(m_label)
#     return re_value# 从原本的表格中直接拿到数据并保存在字典中
def get_ship_properties(original_df):ships = {}for i in range(original_df.shape[0]):ship_properties = {'Name': str(original_df.loc[i, 'ship_ShipName']),'MMSI': str(original_df.loc[i, 'ship_MMSI']),'BuildDate': str(original_df.loc[i, 'ship_BuildDate']),'ShipTypeGroup': str(original_df.loc[i, 'ship_ShipTypeGroup']),'ShipTypeLevel5SubGroup': str(original_df.loc[i, 'ship_ShipTypeLevel5SubGroup']),'ShipType': str(original_df.loc[i, 'ship_ShipType']),'DeadWeight': str(original_df.loc[i, 'ship_DeadWeight']),'GrossTonnage': str(original_df.loc[i, 'ship_GrossTonnage']),'LengthLOA': str(original_df.loc[i, 'ship_LengthLOA']),'MouldWidth': str(original_df.loc[i, 'ship_MouldWidth']),'Draught': str(original_df.loc[i, 'ship_Draught']),'LiquidCapacity': str(original_df.loc[i, 'ship_LiquidCapacity'])}ships[ship_properties['MMSI']] = ship_properties# print(ships)return ships# csv转为df
def csv2df(file_name):df = pd.read_csv(file_name)# print(df.head())return df# df转到neo4j的数据库中
def df2neo(df, ships):diff_group = df.groupby('relation')for relation, df in diff_group:head = Nonetail = Nonehead_property = Nonetail_property = None# print('relation:', relation)df.reset_index(drop=True, inplace=True)# print(df)for i in range(df.shape[0]):if relation == 'GroupCompany' or relation == 'OperatorCompany':head = 'SHIP'head_property = ships[df.loc[i, 'head']]tail = 'COMPANY'tail_property = {'Name': df.loc[i, 'tail']}elif relation == 'CountryOfEconomicBenefit':head = 'SHIP'head_property = ships[df.loc[i, 'head']]tail = 'COUNTRY/REGION'tail_property = {'Name': df.loc[i, 'tail']}elif relation == 'GroupCompanyCountry' or 'CountryOfEconomicBenefit':head = 'COMPANY'head_property = {'Name': df.loc[i, 'head']}tail = 'COUNTRY/REGION'tail_property = {'Name': df.loc[i, 'tail']}# 本来是想对有单引号的数据进行处理,但发现很容易混乱,于是最后用excel把数据中的单引号全部替换掉了# head_property['Name'] = head_property['Name'].replace("'", '\\\'') # tail_property['Name'] = tail_property['Name'].replace("'",'\\\'')if tail_property['Name'] == 'Unknown' or tail_property['Name'] in (None, '', np.nan):continue # 空数据不进行添加# print('head: ', head, ', head_property: ', head_property, ', tail: ', tail, ', tail_property',#       tail_property)createNode(graph, head, head_property)createNode(graph, tail, tail_property)createRelationship(graph, head, head_property, tail, tail_property, relation)ship_df = csv2df('./ships.csv')
original_df = csv2df('./abc.csv')
ships = get_ship_properties(original_df)
df2neo(ship_df, ships)# 以下代码是对createNode函数和createRelationship函数的测试!
# label1 = 'Stock'
# attrs1 = {'name': '招商银行', 'code': '600036'}
# label2 = 'SecuritiesExchange'
# attrs2 = {'name': '上海证券交易所'}
# # 1. 创建节点
# createNode(graph, label1, attrs1)
# createNode(graph, label2, attrs2)
# m_r_name = '证券交易所'
# # 2. 添加关系
# reValue = createRelationship(graph, label1, attrs1, label2, attrs2, m_r_name)

参考

部分代码在张曙光老师的bilibili的neo4j课程基础上做出改动

这篇关于实战:使用py2neo和pandas处理海事数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580962

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约