实战:使用py2neo和pandas处理海事数据

2024-01-07 19:18

本文主要是介绍实战:使用py2neo和pandas处理海事数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海事数据的格式

标签:
ship_ShipName,ship_MMSI,ship_BuildDate,ship_ShipTypeGroup,ship_ShipTypeLevel5SubGroup,ship_ShipType,ship_GroupCompany,ship_GroupCompanyCountry,ship_OperatorCompany,ship_OperatorCompanyCountry,ship_CountryOfEconomicBenefit,ship_DeadWeight,ship_GrossTonnage,ship_LengthLOA,ship_MouldWidth,ship_Draught,ship_LiquidCapacity

首先使用excel根据标签中的如下五个类别创建三元组形成ships.csv文件:

  1. ship_GroupCompany,
  2. ship_GroupCompanyCountry,
  3. ship_OperatorCompany,
  4. ship_OperatorCompanyCountry,
  5. ship_CountryOfEconomicBenefit

ships.csv文件的格式如下图:
在这里插入图片描述
有了三元组和原表格我们可以很方便添加数据到neo4j的数据库中。

函数

  1. createNode:在neo4j中创建节点
  2. createRelationship:在neo4j中创建节点的关系
  3. matchNode:在neo4j中匹配数据
  4. get_ship_properties:得到所有船的属性
  5. csv2df:将csv转为df
  6. df2neo:将df(从df中提取的数据)转为neo4j

代码

from py2neo import *
import os
import pandas as pd
import numpy as np# 数据库
graph = Graph('http://localhost:7474', username='neo4j', password='myneo4j')# 创建节点
def createNode(m_graph, m_label, m_attrs):# m_n = "_.name=" + "\'" + m_attrs['name'] + "\'"m_n = Noneif m_label == 'SHIP':m_n = "_.MMSI=" + "\'" + m_attrs['MMSI'] + "\'"elif m_label == 'COMPANY' or m_label == 'COUNTRY/REGION':m_n = "_.Name=" + "\'" + m_attrs['Name'] + "\'"matcher = NodeMatcher(m_graph)re_value = matcher.match(m_label).where(m_n).first()print(re_value)if re_value is None:m_node = Node(m_label, **m_attrs)n = graph.create(m_node)return n# print('Fail to create Node!!')return None# 创建两个节点的关系,如果节点不存在就不创建关系
def createRelationship(m_graph, m_label1, m_attrs1, m_label2, m_attrs2, m_r_name):reValue1 = matchNode(m_graph, m_label1, m_attrs1)reValue2 = matchNode(m_graph, m_label2, m_attrs2)if reValue1 is None or reValue2 is None:# print('reValue1: ', reValue1, 'reValue2: ', reValue2)# print('Fail to create relationship!!')return Falsem_r = Relationship(reValue1, m_r_name, reValue2)n = graph.create(m_r)return n# 查询节点,按照ID查询,无返回None
# def matchNodeById(m_graph, m_id):
#    matcher = NodeMatcher(m_graph)
#    re_value = matcher.get(m_id)
#    return re_value# 查询节点,按照name查询,无返回None
def matchNode(m_graph, m_label, m_attrs):# m_n = "_.name=" + "\'" + m_attrs['name'] + "\'"m_n = Noneif m_label == 'SHIP':m_n = "_.MMSI=" + "\'" + m_attrs['MMSI'] + "\'"elif m_label == 'COMPANY' or m_label == 'COUNTRY/REGION':m_n = "_.Name=" + "\'" + m_attrs['Name'] + "\'"# print(m_n)matcher = NodeMatcher(m_graph)re_value = matcher.match(m_label).where(m_n).first()return re_value# 查询节点,按照标签查询,无返回None
# def matchNodeByLabel(m_graph, m_label):
#     matcher = NodeMatcher(m_graph)
#     re_value = matcher.match(m_label)
#     return re_value# 从原本的表格中直接拿到数据并保存在字典中
def get_ship_properties(original_df):ships = {}for i in range(original_df.shape[0]):ship_properties = {'Name': str(original_df.loc[i, 'ship_ShipName']),'MMSI': str(original_df.loc[i, 'ship_MMSI']),'BuildDate': str(original_df.loc[i, 'ship_BuildDate']),'ShipTypeGroup': str(original_df.loc[i, 'ship_ShipTypeGroup']),'ShipTypeLevel5SubGroup': str(original_df.loc[i, 'ship_ShipTypeLevel5SubGroup']),'ShipType': str(original_df.loc[i, 'ship_ShipType']),'DeadWeight': str(original_df.loc[i, 'ship_DeadWeight']),'GrossTonnage': str(original_df.loc[i, 'ship_GrossTonnage']),'LengthLOA': str(original_df.loc[i, 'ship_LengthLOA']),'MouldWidth': str(original_df.loc[i, 'ship_MouldWidth']),'Draught': str(original_df.loc[i, 'ship_Draught']),'LiquidCapacity': str(original_df.loc[i, 'ship_LiquidCapacity'])}ships[ship_properties['MMSI']] = ship_properties# print(ships)return ships# csv转为df
def csv2df(file_name):df = pd.read_csv(file_name)# print(df.head())return df# df转到neo4j的数据库中
def df2neo(df, ships):diff_group = df.groupby('relation')for relation, df in diff_group:head = Nonetail = Nonehead_property = Nonetail_property = None# print('relation:', relation)df.reset_index(drop=True, inplace=True)# print(df)for i in range(df.shape[0]):if relation == 'GroupCompany' or relation == 'OperatorCompany':head = 'SHIP'head_property = ships[df.loc[i, 'head']]tail = 'COMPANY'tail_property = {'Name': df.loc[i, 'tail']}elif relation == 'CountryOfEconomicBenefit':head = 'SHIP'head_property = ships[df.loc[i, 'head']]tail = 'COUNTRY/REGION'tail_property = {'Name': df.loc[i, 'tail']}elif relation == 'GroupCompanyCountry' or 'CountryOfEconomicBenefit':head = 'COMPANY'head_property = {'Name': df.loc[i, 'head']}tail = 'COUNTRY/REGION'tail_property = {'Name': df.loc[i, 'tail']}# 本来是想对有单引号的数据进行处理,但发现很容易混乱,于是最后用excel把数据中的单引号全部替换掉了# head_property['Name'] = head_property['Name'].replace("'", '\\\'') # tail_property['Name'] = tail_property['Name'].replace("'",'\\\'')if tail_property['Name'] == 'Unknown' or tail_property['Name'] in (None, '', np.nan):continue # 空数据不进行添加# print('head: ', head, ', head_property: ', head_property, ', tail: ', tail, ', tail_property',#       tail_property)createNode(graph, head, head_property)createNode(graph, tail, tail_property)createRelationship(graph, head, head_property, tail, tail_property, relation)ship_df = csv2df('./ships.csv')
original_df = csv2df('./abc.csv')
ships = get_ship_properties(original_df)
df2neo(ship_df, ships)# 以下代码是对createNode函数和createRelationship函数的测试!
# label1 = 'Stock'
# attrs1 = {'name': '招商银行', 'code': '600036'}
# label2 = 'SecuritiesExchange'
# attrs2 = {'name': '上海证券交易所'}
# # 1. 创建节点
# createNode(graph, label1, attrs1)
# createNode(graph, label2, attrs2)
# m_r_name = '证券交易所'
# # 2. 添加关系
# reValue = createRelationship(graph, label1, attrs1, label2, attrs2, m_r_name)

参考

部分代码在张曙光老师的bilibili的neo4j课程基础上做出改动

这篇关于实战:使用py2neo和pandas处理海事数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580962

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数