CRC32的原理介绍以及查表法实现和多项式相除实现

2024-01-07 10:28

本文主要是介绍CRC32的原理介绍以及查表法实现和多项式相除实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、CRC32的生成多项式

G\left ( x \right )=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x^{1}+1

 多项式系数提取出来,改写位16进制数为:0x104C11DB7,如果转换为33个二进制数[1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
       1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1] ,那么从左到右对应于生成多项式的每个项目的系数(0或1)。

2  CRC32校验码的生成:

    如果待校验的数据写成多项式的形式,也就是把数据先转换为二进制的数,然后每个二进制数对应一个多项式的一个系数;比如待校验的数据是0x85,那么对应二进制[1000 0101],对应多项式:X^{7}+X^{2}+1,把这个多项式再乘以X^{32},然后再除以G(x),最终的余数就是CRC校验码,也就是(X^{7}+X^{2}+1)*X^{32}/G(x)的余数。

3 CRC32校验码完整流程介绍:

  1. Invert bits on each byte,如果输入是多个字节的数据,每个字节的对应二进制数字要逆序排列,字节之间还是保持输入顺序;
  2. 经过上面处理的数据,需要在末尾增加0x00000000四个字节;相当于给输入数据的多项式乘以X^{32}
  3. xor first four bytes with 0xFF (this is to avoid errors on the leading 0s),经过上面步骤处理后输入数据的前四个字节要和0xFFFFFFFF异或。如果输入数据不足4个字节,也没关系,因为步骤2末尾增加0x00000000四个字节,总长度是够4个字节的。
  4. Compute the reminder ,上面步骤生成的数据对应的多项式除以生成多项式G(x)后的余数
  5. Reverse the bits again,余数是4个字节,这4个字节对应的二进制数字要按一个整体逆序排列。
  6. xor the result again. 逆序后的4个字节再和0xFFFFFFFF异或,得到最终的CRC校验值。

上面步骤中,输入数据的逆序,余数的逆序,输入数据和0xFFFFFFFF的异或,以及余数和0xFFFFFFFF的异或,都是可选步骤,根据不同的应用,可能会有不同的选择。

CRC(循环冗余校验)在线计算_ip33.com

4 举例:

calculate the CRC-32 hash for the 'ANSI' string 'abc':inputs:
dividend: binary for 'abc': 0b011000010110001001100011 = 0x616263
polynomial: 0b100000100110000010001110110110111 = 0x104C11DB7start with the 3 bytes 'abc':
61 62 63 (as hex)
01100001 01100010 01100011 (as bin)reverse the bits in each byte:
10000110 01000110 11000110append 32 0 bits:
10000110010001101100011000000000000000000000000000000000XOR (exclusive or) the first 4 bytes with 0xFFFFFFFF:
(i.e. flip the first 32 bits:)
01111001101110010011100111111111000000000000000000000000next we will perform 'CRC division':a simple description of 'CRC division':
we put a 33-bit box around the start of a binary number,
start of process:
if the first bit is 1, we XOR the number with the polynomial,
if the first bit is 0, we do nothing,
we then move the 33-bit box right by 1 bit,
if we have reached the end of the number,
then the 33-bit box contains the 'remainder',
otherwise we go back to 'start of process'note: every time we perform a XOR, the number begins with a 1 bit,
and the polynomial always begins with a 1 bit,
1 XORed with 1 gives 0, so the resulting number will always begin with a 0 bit'CRC division':
'divide' by the polynomial 0x104C11DB7:
01111001101110010011100111111111000000000000000000000000100000100110000010001110110110111---------------------------------111000100010010111111010010010110100000100110000010001110110110111---------------------------------110000001000101011101001001000010100000100110000010001110110110111---------------------------------100001011101010011001111111101010100000100110000010001110110110111---------------------------------111101101000100000100101110100000100000100110000010001110110110111---------------------------------111010011101000101010110000101110100000100110000010001110110110111---------------------------------110101110110001110110001100110010100000100110000010001110110110111---------------------------------101010100000011001111110100001010100000100110000010001110110110111---------------------------------101000011001101111000001011110100100000100110000010001110110110111---------------------------------100011111110110100111110100001100100000100110000010001110110110111---------------------------------110110001101101100000101110110000100000100110000010001110110110111---------------------------------101101010111011100010110000001110100000100110000010001110110110111---------------------------------110111000101111001100011011100100100000100110000010001110110110111---------------------------------10111100011111011101101101010011we obtain the 32-bit remainder:
0b10111100011111011101101101010011 = 0xBC7DDB53note: the remainder is a 32-bit number, it may start with a 1 bit or a 0 bitXOR the remainder with 0xFFFFFFFF:
(i.e. flip the 32 bits:)
0b01000011100000100010010010101100 = 0x438224ACreverse bits:
bit-reverse the 4 bytes (32 bits), treating them as one entity:
(e.g. 'abcdefgh ijklmnop qrstuvwx yzABCDEF'
to 'FEDCBAzy xwvutsrq ponmlkji hgfedcba':)
0b00110101001001000100000111000010 = 0x352441C2thus the CRC-32 hash for the 'ANSI' string 'abc' is: 0x352441C2

5 查表法计算原理:

  1.  输入数据是多个字节,可以按照逐个字节的方式去计算CRC检验值
  2. 首先要对0-255这256个数字,计算每个数字对应的CRC检验值,形成一个表格,可以用0-255来索引校验值
  3. 对于第一个输入字节,首先进行逆序,然后逆序后取值作为索引去查表,获得校验值,得到校验值是4个字节,那么按照多项式的除法步骤,校验值4个字节的开头一个字节需要和第二个输入字节(逆序处理后的)进行二进制加法,也就是异或,然后用这个异或后的值作为索引去查表,得到新的校验值,然后再和下一个字节进行相同的处理,以此类推,直至所有输入数据处理完。
  4. 最后得到的4个字节校验值,进行整体逆序,然后和0xFFFFFFFF异或,得到最终的CRC32校验值。

6  多项式相除方法和查表方法的python代码:

mport numpy as nphex_num = "104C11DB7" # 要转换的十六进制数字
binary_num = bin(int(hex_num, 16))[2:] # 将十六进制转换为十进制再转换为二进制
print("二进制结果:", binary_num)
crc32_gen = np.array(list(binary_num), dtype=int)
print(crc32_gen)# 使用np.pad()函数进行补零操作myCRC32Table = np.zeros(0,dtype=int)for j in range(256):Bytes = bin(j)[2:]Bytes_bin_array = np.array(list(Bytes), dtype=int)Padded_Bytes_bin_array = np.pad(Bytes_bin_array,(0, 32), mode='constant')#print("\n补零后的数组:\n", Padded_Bytes_bin_array)for i in range(len(Padded_Bytes_bin_array)-33+1) :tmp_value = Padded_Bytes_bin_array[i:i+33]#print(tmp_value)if tmp_value[0] ==0:continueelse:Padded_Bytes_bin_array[i:i+33] =  tmp_value ^   crc32_gen#print(Padded_Bytes_bin_array[i:i+33]) remaider_of_Padded_Bytes_bin_array = Padded_Bytes_bin_array[-32:]        CRC32_bytes = int(''.join(map(str, remaider_of_Padded_Bytes_bin_array)),2)       myCRC32Table = np.append(myCRC32Table,CRC32_bytes)#hex_num = "EDB883208" # 要转换的十六进制数字#################   下面是查表法方法计算CRC32 ===================================
Message1 ='0102'
Message1_bin = bin(int(Message1, 16))[2:].zfill(len(Message1)*4) # 将十六进制转换为十进制再转换为二进制
Message1_bin_array = np.array(list(Message1_bin), dtype=int)##reverse the bits in each byte:Message1_bin_array_reverse = np.zeros(0,dtype=int)
for i in range(int(np.size(Message1_bin_array)/8)) :tmp_flip = np.flipud(Message1_bin_array[i*8:i*8+8])tmp_flip_number = int(''.join(map(str, tmp_flip)),2)Message1_bin_array_reverse = np.append(Message1_bin_array_reverse,tmp_flip_number)# 按照字节查询CRC32 table,前一个字节的CRC查表值的前8位需要和下个字节进行异或操作,算出来的新值作为新的查表索引值;每次查出的CRC值还需要和上一次查出的CRC值的高24位异或操作
crc32_result = 0
for i in range(int(np.size(Message1_bin_array_reverse))) :    if i < 4:Message1_bin_array_reverse[i] =Message1_bin_array_reverse[i] ^ 0xFFcrc32_result =myCRC32Table[(crc32_result >> 24) ^ Message1_bin_array_reverse[i]] ^ (crc32_result & 0x00FFFFFF)<<8   #### 如果输入数据小于4个字节,需要对FFFFFFFF剩余的FF特别处理下,比如原始输入数据1个字节,那么有3个0xFF没有在上面的代码中用到,所以要在下面的代码中异或上这三个FF
if int(np.size(Message1_bin_array_reverse)) < 4:if 4-int(np.size(Message1_bin_array_reverse))      ==1 :crc32_result = crc32_result ^ 0xFF000000if 4- int(np.size(Message1_bin_array_reverse))     ==2 :crc32_result = crc32_result ^ 0xFFFF0000                if 4- int(np.size(Message1_bin_array_reverse))     ==3 :crc32_result = crc32_result ^ 0xFFFFFF00# Reverse the result:
crc32_result_bin = bin(crc32_result)[2:].zfill(32)
crc32_result_array = np.array(list(crc32_result_bin), dtype=int)
crc32_result_reverse = np.flipud(crc32_result_array)
crc32_result_reverse = ''.join(map(str, crc32_result_reverse))
print('crc32_result_reverse =  ',hex(int(crc32_result_reverse,2)))crc32_result_reverse_complement  = int(crc32_result_reverse,2)^0xFFFFFFFF
print('crc32_result_reverse_complement',hex(crc32_result_reverse_complement))#################   下面是多项式相除方法计算CRC32 ===================================#Message ='8040C020'
Message ='0102'Message_bin = bin(int(Message, 16))[2:].zfill(len(Message)*4) # 将十六进制转换为十进制再转换为二进制
#Message_bin = '01111001101110010011100111111111000000000000000000000000'
Message_bin_array = np.array(list(Message_bin), dtype=int)############ Reverse input per byte
Message_bin_array_reverse = np.zeros(0,dtype=int)
for i in range(int(np.size(Message_bin_array)/8)) :tmp_flip = np.flipud(Message_bin_array[i*8:i*8+8])Message_bin_array_reverse = np.append(Message_bin_array_reverse,tmp_flip)outputXor = 'ffffffff'
outputXor_bin = bin(int(outputXor, 16))[2:]
outputXor_array = np.array(list(outputXor_bin), dtype=int)kk = len(Message)*4# 使用np.pad()函数进行补零操作
padded_message = np.pad(Message_bin_array_reverse,(0, 32), mode='constant')
print("\n补零后的数组:\n", padded_message)#padded_message = Message_bin_arraypadded_outputXor = np.pad(outputXor_array,(0, kk), mode='constant')#padded_message = padded_message^padded_outputXorfor i in range(len(padded_message)-33+1) :tmp_value = padded_message[i:i+33]print(tmp_value)if tmp_value[0] ==0:continueelse:padded_message[i:i+33] =  tmp_value ^ crc32_genprint(padded_message[i:i+33]) remaider_of_padded_message = padded_message[-32:]CRC32 = ''.join(map(str, remaider_of_padded_message))
print('remaider_of_padded_message = ',hex(int(CRC32,2)))remaider_of_padded_message_reverse = np.flipud(remaider_of_padded_message)
CRC32 = ''.join(map(str, remaider_of_padded_message_reverse))
print('remaider_of_padded_message_reverse = ',hex(int(CRC32,2)))for i in range(len(padded_outputXor)-33+1) :tmp_value = padded_outputXor[i:i+33]print(tmp_value)if tmp_value[0] ==0:continueelse:padded_outputXor[i:i+33] =  tmp_value ^   crc32_genprint(padded_outputXor[i:i+33]) 
remaider_of_padded_outputXor = padded_outputXor[-32:]
remaider_of_padded_outputXor_reverse = np.flipud(remaider_of_padded_outputXor)
CRC32 = ''.join(map(str, remaider_of_padded_outputXor_reverse))
print('remaider_of_padded_outputXor_reverse = ',hex(int(CRC32,2)))CRC32 = remaider_of_padded_message ^ remaider_of_padded_outputXor
CRC32_reverse = np.flipud(CRC32)print(CRC32)CRC32 = ''.join(map(str, CRC32))
print(hex(int(CRC32,2)))print(CRC32_reverse)CRC32_reverse = ''.join(map(str, CRC32_reverse))
print(hex(int(CRC32_reverse,2)))CRC32_reverse_complement  = int(CRC32_reverse,2)^0xFFFFFFFF
print('CRC32_reverse_complement=',hex(CRC32_reverse_complement))

 注意:WLAN的MAC帧的FCS是完整的CRC32校验

这篇关于CRC32的原理介绍以及查表法实现和多项式相除实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/579604

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand