阿亮的算法之路——343整数拆分

2024-01-07 02:59
文章标签 算法 整数 拆分 343 阿亮

本文主要是介绍阿亮的算法之路——343整数拆分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划集中练习

题目详情

题目详情

自己思考

看到这个题目,会想到用动态规划来做,但是我在想,可不可以用一种统一的思想来解决这个问题呢?类似的,比如给定一个周长,求围成面积最大的图形,那一定是园,将各个方向都崩得最大。

我觉得这个题和求面积最大的图形那个题很类似,那这个题的思路肯定也是,将拆分的个数和每一个数的大小都要最大。经过多次尝试,都不行,因为,要拆分成整数,就无法很好的同时兼顾,比如10,按照我的思路,就是应该拆分成3、3、3、1,但是应该是拆成2、3、2、3才是最优的解。而且,应该因数的个数和因数的大小权重应该是不一样的。

第一次

思路

如果用动态规划,这个题实际上有几个弯需要转。
首先就是,状态转移方程应该怎么写,
dp[i] = max(dp[m]*dp[i-m]) m=1,2,3……i-1。我想到的动态转移方程也是这样,比如说10 = 2、3、2、3,就是10 = 5、5,那dp[5]呢?5 = 2、3。但是,dp[2]和dp[3]呢,dp[2] = 1,dp[3] = 2。

所以,对于1,2,3,这个三个特殊的数字,不能把它们的结果放入dp中,而需要特殊判断,特殊返回。如果想要后面的结果正确。那么dp[2]就应该是2,而不是需要返回的1,同样dp[3]应该是2。

另外,如果是完全平方数的整数倍,那么一定是按照完全平方数来拆的。比如dp[8] = dp[4] * dp[4]。dp[27] = dp[9] *dp[9] *dp[9]

代码
    public static int  integerBreak(int n){if (n==1) return 1;if (n==2) return 1;if (n==3) return 2;int[] dp = new int[n+1];if (n /(int)Math.sqrt(n) == 0){dp[n] = (int)Math.pow((int)Math.sqrt(n),n /(int)Math.sqrt(n));return (int)Math.pow((int)Math.sqrt(n),n /(int)Math.sqrt(n));}dp[1] = 1;dp[2] = 2;dp[3] = 3;for (int i = 3; i <= n; i++){for (int j = i/2; j >= 1; j--){ dp[i] = dp[i] > dp[j] *dp[i-j]?dp[i] :  dp[j] *dp[i-j]; }}return dp[n];}

主要就是1、2、3这三个特殊的数字,需要特殊处理。

提交结果

提交结果哈哈,我感觉还不错。

第二次

稍微的对完全平方数的整数倍那里优化了一下

    public static int  integerBreak(int n){if (n==1) return 1;if (n==2) return 1;if (n==3) return 2;int[] dp = new int[n+1];int sqrt = (int)Math.sqrt(n);if (n /sqrt == 0){dp[n] = (int)Math.pow(sqrt,n /sqrt);return (int)Math.pow(sqrt,n /sqrt);}dp[1] = 1;dp[2] = 2;dp[3] = 3;for (int i = 3; i <= n; i++){for (int j = i/2; j >= 1; j--){ dp[i] = dp[i] > dp[j] *dp[i-j]?dp[i] :  dp[j] *dp[i-j]; }}return dp[n];}
提交结果

提交结果
bingo!!

这篇关于阿亮的算法之路——343整数拆分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578514

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

Python实现合并与拆分多个PDF文档中的指定页

《Python实现合并与拆分多个PDF文档中的指定页》这篇文章主要为大家详细介绍了如何使用Python实现将多个PDF文档中的指定页合并生成新的PDF以及拆分PDF,感兴趣的小伙伴可以参考一下... 安装所需要的库pip install PyPDF2 -i https://pypi.tuna.tsingh

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1