计算机组成原理-进位计数制(进制表示 进制转换 真值和机器树)

本文主要是介绍计算机组成原理-进位计数制(进制表示 进制转换 真值和机器树),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 现代计算机的结构
  • 总览
    • 最古老的计数方法
    • 十进制计数法
    • 推广:r进制计数法
    • 任意进制->十进制
    • 二进制<--->八进制,十六进制
  • 各种进制常见的书写方式
  • 十进制->任意进制
    • 整数部分
    • 小数部分
  • 十进制->二进制(拼凑法)
  • 真值和机器数
  • 小结
  • 中国古代的二进制系统

现代计算机的结构

在这里插入图片描述

总览

在这里插入图片描述

最古老的计数方法

一条竖线对应一个苹果,但数量太多竖线太多画不下

后来用横线表示5,所画的线可以少些

表示数字越大,符号表示越繁琐
在这里插入图片描述

十进制计数法

在这里插入图片描述

推广:r进制计数法

符号指的是0,1,2,3……这些
注意
二进制1.1+0.1=10.0
八进制5.4+0.4=6.0
十六进制5.8+0.8=6.0
r进制的数对应的小数部分也要记得逢r进1
注意基数是个数
在这里插入图片描述

任意进制->十进制

在这里插入图片描述

二进制<—>八进制,十六进制

二进制转八进制和十六进制
小数部分位不够往后补0,整数部分位不够往前补0
补到能够取对应位数的个数即可,转换依旧是从取的位数部分右边为低位,左边是高位,然后转换为对应的进制的数值

在这里插入图片描述

各种进制常见的书写方式

B:binary
在这里插入图片描述

十进制->任意进制

十进制的整数部分对应转换后的进制的整数部分
十进制的小数部分对应转换后的进制的小数部分
这样十进制和转换后进制值的计算出的大小不会变

整数部分

在这里插入图片描述

小数部分

在这里插入图片描述

十进制->二进制(拼凑法)

找该数等于二进制的那些位的权值的和(或者2的多少次方的和)
转换为二进制后,再转化为八进制和十六进制更方便
在这里插入图片描述

真值和机器数

在这里插入图片描述

小结

注意补位和小数可能无法用其他进制精确表示
在这里插入图片描述

中国古代的二进制系统

太极树的分支对应0和1
在这里插入图片描述

这篇关于计算机组成原理-进位计数制(进制表示 进制转换 真值和机器树)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578418

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

usaco 1.2 Palindromic Squares(进制转化)

考察进制转化 注意一些细节就可以了 直接上代码: /*ID: who jayLANG: C++TASK: palsquare*/#include<stdio.h>int x[20],xlen,y[20],ylen,B;void change(int n){int m;m=n;xlen=0;while(m){x[++xlen]=m%B;m/=B;}m=n*n;ylen=0;whi

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit