算法第十二天-最大整除子集

2024-01-07 00:28

本文主要是介绍算法第十二天-最大整除子集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最大整除子集

题目要求

解题思路

来自[宫水三叶]
根据题意:对于符合要求的[整除子集]中的任意两个值,必然满足[较大数]是[较小数]的倍数
数据范围是 1 0 3 10^3 103,我们不可能采取获取所有子集,再检查子集是否合法的暴力搜解法。
通常递归做不了,我们就往[递推]方向取考虑。
由于存在[整除子集]中任意两个值必然存在倍数/约数关系的性质,我们自然会想到对nums进行排序,然后从集合nums中从大到小进行取数每次取数只考虑到当前决策的数是否与[整除子集]中的最后一个数成倍数关系即可。
这时候你可能会想枚举个数作为[整除子集]的起点,然后从前往后遍历一遍,每次都将符合[与当前子集最后一个元素成倍数]关系的数加入答案。
但是这样子的做法只能确保获得[合法解],无法确保得到的是[最长整除子集]
得到这个反例:[9,18,54,90,108,180,360,540,720],如果按照我们上述逻辑,我们得到的是 [9,18,54,108,540] 答案(长度为 5),但事实上存在更长的「整除子集」: [9,18,90,180,360,720](长度为 6)。

其本质是因为同一个数的不同倍数之间不存在必然的[倍数/约数关系],而是存在[具有公约数]的性质,这会导致我们[模拟解法]错过最优解
因此当我们决策到某个数nums[i]时(nums已排好序),我们无法直接将nums[i]直接接在符合[约数关系]的,最靠近位置i的数后面,而是要检查位置i前面的所有符合[约数关系]的位置,找到一个已经形成[整除子集]长度最大的数。换句话说,当我们对nums排好序号并从前往后处理时,已经形成的[整数子集]长度是多少,然后从中选一个最长的[整除子集],将nums[i]接在后面(前提是符合[倍数关系])

动态规划

基于上述分析,我们不难发现这其实是一个序列DP问题:某个状态的转移依赖于与前一个状态的关系。即nums[i]能否接在nums[j]后面,取决于是否满足nums[i] % nums[j] == 0条件
可以看作是[最长上升子序列]问题的变形题。
定义f[i]为考虑前i个数字,且以第i个数为结尾的最长[整数子集]长度
我们不失一般性的考虑任意位置i,存在两种情况:

  • 如果在i之前找不到符合条件nums[i]%nums[j]==0的位置j,那么nums[i]不能接在位置i之前的任何数的后面,只能自己独立作为[整除子集]的第一个数,此时状态转移方程为f[i]=1;
  • 如果在i之前能够找到符合条件的位置j,则取所有符合条件的f[i]的最大值,代表如果希望找到以nums[i]作为结尾的最长[整除子集],需要将nums[i]接到符合条件的最长的nums[j]后面,此时状态转移方程为f[i]=f[j]+1

同时由于我们需要输出具体方案,需要额外使用g[]数组来记录每个状态是由哪个状态转移而来的。
定义g[i]为记录f[i]是由哪个下标的状态转移而来的,如果f[i] = f[j] + 1,则有g[i] = j
对于求方案数的题目,多开一个数组来记录状态从何转移而来是常见的手段。当我们求得所有的状态值止呕,可以对f[]数组进行遍历,取得最长[整除子集]长度和对应下标,然后使用g[]数组进行回溯,取得答案。

代码

class Solution:def largestDivisibleSubset(self, nums: List[int]) -> List[int]:nums.sort()n = len(nums)f,g = [0] *n,[0]*nfor i in range (n):#至少包含自身一个数,因此起始长度为1,由自身转移而来length,prev =1,ifor j in range(i):if nums[i] %nums[j] ==0:# 如果能接在更长的序列后面,则更新[最大长度]&[从何转移而来]if f[j] +1>length:length +=1prev =j# 记录【最终长度】& 【从何转移而来】f[i] =lengthg[i] =prev#遍历所有的f[i],取得[最大长度]和【对应下标】max_len = idx = -1for i in range(n):if f[i] >max_len:idx =imax_len =f[i]#使用g[]数组回溯出具体方案ans=[]while len(ans)<max_len:ans.append(nums[idx])idx = g[idx]ans.reverse()return ans

复杂度分析

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

这篇关于算法第十二天-最大整除子集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578123

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

python中的整除向下取整的操作方法

《python中的整除向下取整的操作方法》Python中的//是整数除法运算符,用于执行向下取整的除法,返回商的整数部分,不会四舍五入,它在分治法、索引计算和整数运算中非常有用,本文给大家介绍pyth... 目录1. // 的基本用法2. // vs /(普通除法)3. // 在 mid = len(lis

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第