R语言【rWCVP】——rWCVP生成可发表级别的物种发现记录矩阵

2024-01-06 23:50

本文主要是介绍R语言【rWCVP】——rWCVP生成可发表级别的物种发现记录矩阵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

rWCVP生成可发表级别的物种发现记录矩阵

  • 介绍
  • 1. 查询一组示例数据
  • 2. 生成和格式化出现矩阵
  • 3. 额外地对国家进行处理

介绍

世界维管植物名录(WCVP)提供了已知的>340,000种维管植物物种的分布数据。该分布数据可用于构建植物物种名录的发现记录矩阵,rWCVP可以提供帮助。

除了 rWCVP 之外,还可以使用 tidyverse 包进行数据操作和绘图,并使用 gt 包来格式化表格。

先做好准备工作

library(rWCVP)
library(tidyverse)
library(gt)

在此示例中,使用==管道运算符 (%>%) 和 dplyr语法 ==- 如果不熟悉这些,我建议查看 https://dplyr.tidyverse.org/ 和其中的一些帮助页面。

1. 查询一组示例数据

对于这个例子,我们没有想要检查的特定区域或植物组,但这让我们有机会展示rWCVP中的其他功能之一!

我们想要一组物种,a)不太大,b)分布在几个WGSRPD 3级区域。巴西就是不错的选择,因为它有五个3级区域(对于这个目的来说,这是一个不错的数字,因为该表格将适合纵向页面)。让我们看看是否有一些大小不错的示例属,使用 wcvp_summary 函数:

wcvp_summary(taxon = "Myrtaceae", taxon_rank = "family", area=get_wgsrpd3_codes("Brazil"), grouping_var = "genus")%>%wcvp_summary_gt()

在这里插入图片描述
Calycolpus看起来又漂亮又整齐——让我们看看这 8 个物种是如何分布在 5 个区域的。
我们可以使用相同的函数,但限制我们的分类单元并将我们的分组变量更改为 area。

wcvp_summary(taxon = "Calycolpus", taxon_rank = "genus", area=get_wgsrpd3_codes("Brazil"), grouping_var = "area_code_l3")%>%wcvp_summary_gt()

在这里插入图片描述
嗯,也许有点太小了 - 它只出现在 5 个区域中的 3 个。Myrciaria呢?

wcvp_summary(taxon = "Myrciaria", taxon_rank = "genus", area=get_wgsrpd3_codes("Brazil"), grouping_var = "area_code_l3")%>%wcvp_summary_gt()

在这里插入图片描述

2. 生成和格式化出现矩阵

为该属生成出现矩阵就像使用 generate_occurence_matrix 函数一样简单。

m = wcvp_occ_mat(taxon = "Myrciaria", taxon_rank = "genus", area=get_wgsrpd3_codes("Brazil"))
# A tibble: 23 × 7plant_name_id taxon_name             BZC   BZE   BZL   BZN   BZS<dbl> <chr>                <dbl> <dbl> <dbl> <dbl> <dbl>1        473796 Myrciaria alagoana       0     1     0     0     02        534878 Myrciaria alta           0     0     1     0     03        534776 Myrciaria cambuca        0     1     1     0     04        131799 Myrciaria cordata        0     0     0     1     05        131802 Myrciaria cuspidata      1     1     1     0     16        131803 Myrciaria delicatula     1     0     1     0     17        131806 Myrciaria disticha       0     1     1     0     08        131810 Myrciaria dubia          1     0     0     1     09        491614 Myrciaria evanida        0     0     1     0     0
10        131814 Myrciaria ferruginea     0     1     1     0     0
# ℹ 13 more rows
# ℹ Use `print(n = ...)` to see more rows

没关系,但是我们可以使用 gt 包让它更漂亮。让我们执行以下操作:

  • 删除 WCVP ID 列
  • 将taxon_id更改为“物种”
  • 使物种名称为斜体
  • 加粗列标题
  • 减少文本周围的空间,使字体大小为 12
  • 删除内部边框
  • 将 1 和 0 更改为 X 和空白
m_gt = m %>% select(-plant_name_id) %>%gt() %>%cols_label(taxon_name = "Species") %>%tab_style(style = cell_text(style = "italic"),locations = cells_body(columns = taxon_name)) %>%tab_options(column_labels.font.weight = "bold",data_row.padding = px(1),table.font.size = 12,table_body.hlines.color = "transparent",) %>%text_transform(locations = cells_body(),fn = function(x) {ifelse(x==0, "", x)}) %>%text_transform(locations = cells_body(),fn = function(x){ifelse(x==1, "X", x)})m_gt

在这里插入图片描述
好多了!我们可以将此 gt 表另存为 HTML 表或图片。如果我们打算再制作几个表格,我们可以通过将表格样式保存为主题来节省空间(有关更多详细信息,请参阅 https://themockup.blog/posts/2020-09-26-functions-and-themes-for-gt-tables/)

occ_mat_theme <- function(x){x %>% cols_label(taxon_name = "Species") %>% #make species names italictab_style(style=cell_text(style="italic"),locations = cells_body(columns= taxon_name)) %>% tab_options(# some nice formattingcolumn_labels.font.weight = "bold",data_row.padding = px(1),table.font.size = 12,table_body.hlines.color = "transparent",) %>%# change the zeroes into blankstext_transform(locations = cells_body(),fn = function(x){ifelse(x == 0, "", x)}) %>% # change the 1s into Xtext_transform(locations = cells_body(),fn = function(x){ifelse(x == 1, "X", x)})
}

gt() 的最大问题是它不支持 Word - 要直接导出到 docx 文件,请查看 flextable 。包括或排除发生类型 如果我们只想知道本地或引进物种怎么办?此函数可以选择筛选其中一个。巴西Myrciaria在这方面看起来不是很有趣(我们可以从汇总表中看到只引入了一个物种),所以让我们看看一个更具入侵性的群体 - 北欧的Poa(2级区域)。

wcvp_summary(taxon = "Poa", taxon_rank = "genus", area=get_wgsrpd3_codes("Northern Europe"), grouping_var = "area_code_l3") %>% wcvp_summary_gt()

在这里插入图片描述
还有一些工作要做。首先,让我们只看本地物种:

p = wcvp_occ_mat(taxon = "Poa", taxon_rank = "genus", area=get_wgsrpd3_codes("Northern Europe"), introduced = FALSE, extinct = FALSE, location_doubtful = FALSE)
p
# A tibble: 20 × 11plant_name_id taxon_name        DEN   FIN   FOR   GRB   ICE   IRE<dbl> <chr>           <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>1        435004 Poa abbreviata      0     0     0     0     0     02        435078 Poa alpigena        0     1     1     0     1     03        435085 Poa alpina          0     1     1     1     1     14        435167 Poa angustifol…     1     1     0     1     0     05        435194 Poa annua           1     1     1     1     1     16        435235 Poa arctica         0     1     0     0     0     07        435458 Poa bulbosa         1     1     0     1     0     08        435622 Poa compressa       1     1     0     0     0     09        435932 Poa flexuosa        0     0     0     1     1     0
10        435996 Poa glauca          0     1     1     1     1     0
11        436089 Poa hartzii         0     0     0     0     0     0
12        436146 Poa humilis         1     1     1     1     1     1
13        436189 Poa infirma         0     0     0     1     0     0
14        436383 Poa lindebergii     0     1     0     0     0     0
15        436600 Poa nemoralis       1     1     1     1     1     1
16        436739 Poa palustris       1     1     0     1     0     0
17        436906 Poa pratensis       1     1     1     1     1     1
18        437092 Poa remota          1     1     0     0     0     0
19        437424 Poa supina          1     1     0     0     0     0
20        437547 Poa trivialis       1     1     1     1     1     1
# ℹ 3 more variables: NOR <dbl>, SVA <dbl>, SWE <dbl>

我们可以像上面一样格式化这个矩阵,但让我们跳过那些步骤,直接处理引入的物种。我们正在做与以前相同的格式设置,但也添加一个标题 - html 函数可以将我们的属名和所有内容斜体化!

p = wcvp_occ_mat(taxon = "Poa", taxon_rank = "genus", area=get_wgsrpd3_codes("Northern Europe"),native = FALSE, introduced = TRUE, extinct = FALSE, location_doubtful = FALSE)
p %>% select(-plant_name_id) %>% #remove ID colgt() %>% occ_mat_theme() %>%  #the theme we defined above#add a headertab_header(title=html("Introduced <em>Poa</em> species in Northern Europe")) 

在这里插入图片描述

3. 额外地对国家进行处理

使用 gt 创建的表非常灵活 - 假设我们想查看美加边境出现的记录:

f = wcvp_occ_mat("Fritillaria", "genus", area=c("WAS","ORE","IDA","MNT","ABT","BRC"))
f_gt = f %>%select(-plant_name_id) %>%gt() %>%occ_mat_theme() %>%tab_header(title = html("<em>Fritillaria</em> species in Northwest USA and Southwest Canada"))
f_gt

在这里插入图片描述
了解哪些代码在美国,哪些在加拿大非常有用。我们可以使用 rWCVP 中包含的数据来创建检索表。

wgsrpd_mapping %>%filter(LEVEL3_COD %in% c("WAS","ORE","IDA","MNT","ABT","BRC")) %>%select(LEVEL3_NAM, LEVEL3_COD, COUNTRY) %>%gt() %>%tab_options(column_labels.font.weight = "bold",data_row.padding = px(1),table.font.size = 12,table_body.hlines.color = "transparent",)

在这里插入图片描述
不过,将其放在发生矩阵上确实会更好。输入 tab_spanner():

f_gt %>%tab_spanner(label = "United States", columns = c(IDA, MNT, ORE, WAS)) %>%tab_spanner(label = "Canada", columns = c(ABT, BRC))

在这里插入图片描述
gt 还有很多事情可以做 - 请参阅 https://gt.rstudio.com/ 以获取帮助、示例和文档。

这篇关于R语言【rWCVP】——rWCVP生成可发表级别的物种发现记录矩阵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578039

相关文章

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

C语言逗号运算符和逗号表达式的使用小结

《C语言逗号运算符和逗号表达式的使用小结》本文详细介绍了C语言中的逗号运算符和逗号表达式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 在C语言中逗号“,”也是一种运算符,称为逗号运算符。 其功能是把两个表达式连接其一般形式为:表达

Go语言实现桥接模式

《Go语言实现桥接模式》桥接模式是一种结构型设计模式,它将抽象部分与实现部分分离,使它们可以独立地变化,本文就来介绍一下了Go语言实现桥接模式,感兴趣的可以了解一下... 目录简介核心概念为什么使用桥接模式?应用场景案例分析步骤一:定义实现接口步骤二:创建具体实现类步骤三:定义抽象类步骤四:创建扩展抽象类步

GO语言实现串口简单通讯

《GO语言实现串口简单通讯》本文分享了使用Go语言进行串口通讯的实践过程,详细介绍了串口配置、数据发送与接收的代码实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录背景串口通讯代码代码块分解解析完整代码运行结果背景最近再学习 go 语言,在某宝用5块钱买了个

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

JAVA Log 日志级别和使用配置示例

《JAVALog日志级别和使用配置示例》本文介绍了Java中主流的日志框架,包括Logback和Log4j2,并详细解释了日志级别及其使用场景,同时,还提供了配置示例和使用技巧,如正确的日志记录方... 目录一、主流日志框架1. Logback (推荐)2. Log4j23. SLF4J + Logback

GO语言zap日志库理解和使用方法示例

《GO语言zap日志库理解和使用方法示例》Zap是一个高性能、结构化日志库,专为Go语言设计,它由Uber开源,并且在Go社区中非常受欢迎,:本文主要介绍GO语言zap日志库理解和使用方法的相关资... 目录1. zap日志库介绍2.安装zap库3.配置日志记录器3.1 Logger3.2 Sugared