redis源码分析,SDS动态字符串

2024-01-06 23:48

本文主要是介绍redis源码分析,SDS动态字符串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

redis源码分析,SDS动态字符串

SDS [basic redis v6.0],源码路径: src/sds.c, src/sds.h, src/sdsalloc.h
redis中的字符串类型为SDS(C dynamic strings)是一个动态类型字符串。 可以无限增长,理论上长度最大2^64

下面是redis中 SDS的结构

struct __attribute__ ((__packed__)) sdshdr32 {uint32_t len; /* buf已用长度 */uint32_t alloc; /* buf逻辑上预留长度,不包括结构体头部字段所占内存长度,并且不包含buf结尾的\0字符 */unsigned char flags; /* 字符串类型, 也表示了字符串的最长长度,可以动态增长 */char buf[]; /* 实际存储字符串的空间 */
};
  • 其中 attribute ((packed)) 告诉编译器取消在编译过程中的内存对齐。关于内存对齐,网上有详细文章。
  • uint32_t len; 其中uint32_t是typedef定义的。 还有uint8_t, uint16_t, uint32_t, uint64_t。实际的定义取决于编译器,具体如下
// Visual Studio 6 and Embedded Visual C++ 4 doesn't
// realize that, e.g. char has the same size as __int8
// so we give up on __intX for them.
#if (_MSC_VER < 1300)typedef signed char       int8_t;typedef signed short      int16_t;typedef signed int        int32_t;typedef unsigned char     uint8_t;typedef unsigned short    uint16_t;typedef unsigned int      uint32_t;
#elsetypedef signed __int8     int8_t;typedef signed __int16    int16_t;typedef signed __int32    int32_t;typedef unsigned __int8   uint8_t;typedef unsigned __int16  uint16_t;typedef unsigned __int32  uint32_t;
#endif
typedef signed __int64       int64_t;
typedef unsigned __int64     uint64_t;
  • char buf[]; 属性为实际存储字符串的字符数组。具体长度取决于flags。也是sdshdr的类型
  • uint32_t len; 属性buf已经使用的字节长度,也就想到与strlen(len)。和多数stl数据结构实现一样,因为strlen(len)时间复杂度为O(n),所以存储len,可以达到O(1)的时间取长度。
  • uintew_t alloc; 为buf逻辑预留空间,不包含\0字符。其实alloc不一定等于实际的sizeof(buf)/sizeof(char),因为buf为实际的预留空间,初始化时候len, alloc, sizeof(buf)/sizeof(char)均为字符串长度+1, 基本没有浪费内存. 而如果增长的化, buf长度一定是28,216,232,264(需要再减去结构体头部空间和\0字符),而alloc也是预留空间长度,当字符串增长时,假设alloc小于增长后的len,那么alloc会增长,当alloc增长后的值大于2^flags时,结构体会重新构造,当然并不是真正构造结构体,只是操作内存函数重新分配了更大的一块空间,再进行内存拷贝。所以alloc值介于len和sizeof(buf)/sizeof(char)之间
  • unsigned char flags; 为字符串的类型,有如下几个值,也就是整个结构体所占内存空间,初始化后所占内存为strlen(buf)+1, 而增长的话, 近似2^flags大小.
    /** #define SDS_TYPE_5  0* #define SDS_TYPE_8  1 // 对应长度为0 ~ 2^8-1, 假设字符串增长了的话, 那么结构体所占内存总是2^8大小* #define SDS_TYPE_16 2* #define SDS_TYPE_32 3* #define SDS_TYPE_64 4*/

下面来看一下redis对sds的内存初始化,即memory allocate

// 为了节省代码空间,假设分配的是32位的字符类型

sds sdsnewlen(const void *init, size_t initlen) {void *sh;sds s;char type = sdsReqType(initlen);    // if (initlen < 1<<32) {return SDS_TYPE_32}, 返回能满足所需的最小长度/* 不使用type 5,最少使用type8 */if (type == SDS_TYPE_5 && initlen == 0) type = SDS_TYPE_8;int hdrlen = sdsHdrSize(type);      // return sizeof(struct sdshdr32), 即结构体头部字段所占用内存(buf为空数组的时候)unsigned char *fp;                  /* 指向flags字段 */assert(initlen + hdrlen + 1 > initlen); /* 判断整数溢出 */sh = s_malloc(hdrlen+initlen+1);    // 分配了结构体头部字段所占长度 + buf长度 + 空字符长度if (sh == NULL) return NULL; if (init==SDS_NOINIT)init = NULL;else if (!init)memset(sh, 0, hdrlen+initlen+1);s = (char*)sh+hdrlen;           // buf字段 内存开始位置fp = ((unsigned char*)s)-1;     // flags字段 内存所在位置switch(type) {case SDS_TYPE_5: {*fp = type | (initlen << SDS_TYPE_BITS);break;}case SDS_TYPE_8:  // { 和SDS_TYPE_32一样;  break;}case SDS_TYPE_16: // { 和SDS_TYPE_32一样;  break;}case SDS_TYPE_32: {SDS_HDR_VAR(32,s); // #define SDS_HDR_VAR(T,s) struct sdshdr##T *sh = (void*)((s)-(sizeof(struct sdshdr##T))); 即将指向buf的s指针 反序列化为结构体指针,同时赋值到shsh->len = initlen; // 因为空字符串, 所以len == alloc,若buf = ['a', 'b', 0, 0 ,0 ,0, ... ]sh->alloc = initlen;*fp = type;break;}case SDS_TYPE_64: // { 和SDS_TYPE_32一样;  break;}}if (initlen && init)memcpy(s, init, initlen);// 返回的是char*指针, typedef char* sdss[initlen] = '\0';return s;
}
  • 可以看到,redis是直接把整个结构体的内存申请出来,然后操作指针,访问结构体的每一个变量,因为指定了编译器不会对内存进行优化,所以指针的前后移动可以直接访问到每一个属性,而直接返回buf位置的指针,可以让使用者达到和char []同样的使用效果,其实在物理上还是实现上也确实没太大区别
  • s_malloc()的空间基本等于字符数组长度, 所以初始化时几乎没有内存浪费
  • 关于指针的移动访问变量,我写了一个示例代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>struct __attribute__ ((__packed__)) Test {char a;int b;long long c;int* d;
};int main () {void* tp = malloc(sizeof(struct Test));// 初始化内存值均为0memset(tp, 0, sizeof(struct Test));// 将内存序列化为结构struct Test* t = (struct Test*)(tp);// 赋值属性t->a = 'a';t->b = 1;t->c = 2;t->d = &(t->b);// 通过指针移动访问属性printf("a:%c\n", *(char*)tp);tp += sizeof(char);printf("b:%d\n", *(int*)tp);tp += sizeof(int);printf("b:%lld\n", *(long long*)tp);tp += sizeof(long long);printf("b:%d\n", *(*(int**)tp));return 0;
}

实现更新len属性的函数

void sdsupdatelen(sds s) {size_t reallen = strlen(s);sdssetlen(s, reallen);
}

为什么会有这个函数?
因为当s = [‘a’, ‘b’, ‘c’, ‘\0’, 0, …]时
操作 s[2] = ‘\0’;
现在sdslen(s)时,结果是3, 因为sdslen(s)是调用SDS_HDR(32, s) > ->len,但是len字段没有被更新。
但是实际的长度是strlen(s) ==> 2, 所以需要调用sdsupdatelen() > 函数更新len值。
那为什么要用sdslen(s)而不直接用strlen(s)测字符串长度呢?
因为sdslen因为直接取len值,所以时间复杂度为O(1),而strlen需要 > 遍历字符串数组,直到找到\0字符,所以时间复杂度为O(n)

动态增长实现

// 预留空间
sds sdsMakeRoomFor(sds s, size_t addlen) {void *sh, *newsh;size_t avail = sdsavail(s); // return alloc - lensize_t len, newlen;char type, oldtype = s[-1] & SDS_TYPE_MASK;int hdrlen;if (avail >= addlen) return s; // (alloc - len) > addlen,可用空间大于所需要空间len = sdslen(s);sh = (char*)s-sdsHdrSize(oldtype);newlen = (len+addlen);assert(newlen > len);   /* Catch size_t overflow */if (newlen < SDS_MAX_PREALLOC)newlen *= 2;elsenewlen += SDS_MAX_PREALLOC;type = sdsReqType(newlen); // 增长后的类型。假设原来是SDS_TYPE_8, 增长后长度大于2^8,所以type变为SDS_TYPE_16,若仍然小于2^8,则type 仍为SDS_TYPE_8if (type == SDS_TYPE_5) type = SDS_TYPE_8;hdrlen = sdsHdrSize(type);assert(hdrlen + newlen + 1 > len);  /* Catch size_t overflow */if (oldtype==type) {//因为结构体头部字段除了buf外长度并未改变,所以直接realloc即可newsh = s_realloc(sh, hdrlen+newlen+1);if (newsh == NULL) return NULL;s = (char*)newsh+hdrlen;} else {/* 上面的realloc实际也是进行空间判断,如果后面可用内存空间可以满足需求,则直接增长,返回空间,如果已被利用,则进行malloc在memcpy, 那么这里为什么不直接调用realloc呢? 因为结构体头部len和alloc所占的空间变了, 即hdrlen变了,所以需要memcpy在拷贝过程中同时移动buf位置*/newsh = s_malloc(hdrlen+newlen+1);if (newsh == NULL) return NULL;memcpy((char*)newsh+hdrlen, s, len+1);s_free(sh);s = (char*)newsh+hdrlen;s[-1] = type;sdssetlen(s, len);}sdssetalloc(s, newlen);return s;
}
  • 可以看到当oldtype==type时, 调用了realloc, 因为除了位于结构体内存末尾的buf, 其他字段长度并未改变.
  • 而oldtype!=type时, 执行了malloc和memcpy, 基本等同于cpp 的new struct的内存构造过程
// append实现
sds sdscatlen(sds s, const void *t, size_t len) {size_t curlen = sdslen(s);s = sdsMakeRoomFor(s,len);  // 预留空间if (s == NULL) return NULL;memcpy(s+curlen, t, len);   // append到预留的空间sdssetlen(s, curlen+len);   // 重新设置lens[curlen+len] = '\0';       // 增加\0return s;
}sds sdscat(sds s, const char *t) {return sdscatlen(s, t, strlen(t));
}

这篇关于redis源码分析,SDS动态字符串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578029

相关文章

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用