计算机视觉 opencv_使用opencv计算机视觉和螺旋波测试检测帕金森

2024-01-06 20:50

本文主要是介绍计算机视觉 opencv_使用opencv计算机视觉和螺旋波测试检测帕金森,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机视觉 opencv

Utilizing computer vision and machine learning to automatically detect and predict Parkinson’s disease based on geometric drawings (i.e., spirals and sign waves).

利用计算机视觉和机器学习,可以根据几何图形(即螺旋形和符号波)自动检测和预测帕金森氏病。

绘制螺旋和波浪以检测帕金森氏病 (Drawing spirals and waves to detect Parkinson’s disease)

Image for post

A 2017 study by Zham et al. found that it was possible to detect Parkinson’s by asking the patient to draw a spiral and then track:

Zham等人的2017年研究。 发现可以通过要求患者画出螺旋线然后进行跟踪来检测帕金森氏症:

  1. Speed of drawing

    绘图速度
  2. Pen pressure

    笔压

The researchers found that the drawing speed was slower and the pen pressure lower among Parkinson’s patients — this was especially pronounced for patients with a more acute/advanced forms of the disease.

研究人员发现,帕金森氏症患者的绘画速度较慢,笔压较低-对于这种疾病的急性/晚期患者尤其如此

We’ll be leveraging the fact that two of the most common Parkinson’s symptoms include tremors and muscle rigidity which directly impact the visual appearance of a hand drawn spiral and wave.

我们将利用以下事实:帕金森氏症最常见的两种症状包括震颤和肌肉僵硬,这直接影响到手绘螺旋和波浪形的视觉外观。

The variation in visual appearance will enable us to train a computer vision and machine learning algorithm to automatically detect Parkinson’s disease.

视觉外观的变化将使我们能够训练计算机视觉和机器学习算法,以自动检测帕金森氏病。

数据集 (Dataset)

The dataset itself consists of 204 images and is pre-split into a training set and a testing set, consisting of:

数据集本身包含204张图像,并被预先划分为训练集和测试集,其中包括:

  • Spiral: 102 images, 72 training, and 30 testing

    螺旋: 102张图像,72次训练和30次测试

  • Wave: 102 images, 72 training, and 30 testing

    Wave: 102张图像,72次训练和30次测试

Here we would be applying two methods :

在这里,我们将应用两种方法:

  • Apply computer vision and OpenCV to detect Parkinson’s based on geometric drawings and then train a machine learning model to classify them

    应用计算机视觉和OpenCV检测基于几何图形的帕金森氏病,然后训练机器学习模型对其进行分类
  • Apply deep learning(Fastai)

    应用深度学习(法泰)

需要包装 (Packages Required)

  • OpenCV

    OpenCV
  • NumPy

    NumPy
  • Scikit-learn

    Scikit学习
  • Scikit-image

    Scikit图片
  • imutils

    不实用

导入库(Import Libraries)

Image for post

定义函数以HOG(定向直方图)方法量化波/螺旋图像(Define a function to quantify a wave/spiral image with the HOG(Histogram of Oriented Gradients) method)

Image for post

定义一个函数以接受数据集路径并返回所有要素数据和关联的类标签(Define a function to accept a dataset path and returning all feature data and associated class labels)

Image for post

提取训练和测试特征以获取螺旋图像(Extract Train and Test Features for spiral images)

Image for post
Image for post
Image for post
Image for post

将标签编码为整数(Encode the Labels into Integer)

Image for post

使用RandomForest分类器训练模型并评估测试图像(Train the model using RandomForest Classifier and evaluate on the test images)

Image for post
Image for post

遍历为每个线索生成的指标(Loop over the metrics generated for each trail)

Image for post

Output :

输出:

Image for post

Validation Accuracy for Spiral images is 82%

螺旋图像的验证精度为82%

测试在随机图像上训练的模型: (Test the model trained on random Images:)

  • randomly sample images from our testing set.

    从我们的测试集中随机采样图像。
  • Loop over the random image indices

    循环遍历随机图像索引
  • Image list will hold each wave or spiral image along with annotations added via OpenCV drawing functions.

    图像列表将保存每个波形或螺旋图像,以及通过OpenCV绘图功能添加的注释。
  • for each image in the list automatically classify the image using our new HOG + Random Forest based classifier and add color-coded annotations

    对于列表中的每个图像,使用我们新的基于HOG + Random Forest的分类器对图像进行自动分类,并添加颜色编码的注释

  • Finally add the image list to opencv montage for visualization

    最后将图像列表添加到opencv montage以进行可视化
Image for post
Image for post
Image for post

The opencv build_montages function requires three arguments:

opencv build_montages函数需要三个参数:

  • image_list : This parameter is a list of images loaded via OpenCV.

    image_list此参数是通过OpenCV加载的图像的列表。

  • image_shape: A tuple containing the width and height of each image in the montage.

    image_shape一个元组,包含蒙太奇中每个图像的宽度和高度。

  • montage_shape: A second tuple, this one specifying the number of columns and rows in the montage. Here we indicate that our montage will have 5columns (5 images wide) and 5rows (5 images tall).

    montage_shape第二个元组,该元组指定蒙太奇中的列和行数。 在这里,我们指示蒙太奇将有5列(宽5幅图像)和5行(高5幅图像)。

The build_montages method returns a list of montage images in NumPy array format.

build_montages方法以NumPy数组格式返回蒙太奇图像的列表。

Note: Empty space in the montage will be filled with black pixels.

注意:蒙太奇中的空白将被黑色像素填充。

Image for post

The class label is colored green for “healthy” and red for “parkinsons”

班级标签的绿色表示“健康” ,红色表示“帕金森”

类似地训练波形图像模型并在测试图像上进行评估 (Similarly training the model for wave images and evaluating on the test Images)

Output :

输出:

Image for post

Validation Accuracy for wave images is 65%

波浪图像的验证精度为65%

Image for post

帕金森病分类器:使用Fastai (Parkinsons Disease Classifier : using Fastai)

导入所需的Fastai库 (Import required Fastai libraries)

Image for post

设置图像路径(Set image path)

Image for post

启用变换(图像增强)(Enabling Transforms (Image Augmentation))

Transforms are passed on when creating the “ImageDataBunch” objects.Genearlly, you may enable the “Default” transforms by calling

创建“ ImageDataBunch”对象时会传递转换。通常,您可以通过调用启用“默认”转换

tfms = get_transforms()

tfms = get_transforms()

Image for post

The tuple contating transforms has 2 lists nested.

元组连续转换有两个嵌套的列表。

  • One is for the training dataset.

    一种是用于训练数据集。
  • Second one is for the validation dataset that involves minimal transforms/just resizing.

    第二个是用于验证数据集,该数据集涉及最少的转换/仅调整大小。

tfms [0] (tfms[0])

[RandTransform(tfm=TfmCrop (crop_pad), kwargs={‘row_pct’: (0, 1), ‘col_pct’: (0, 1), ‘padding_mode’: ‘reflection’}, p=1.0, resolved={}, do_run=True, is_random=True, use_on_y=True), RandTransform(tfm=TfmAffine (dihedral_affine), kwargs={}, p=1.0, resolved={}, do_run=True, is_random=True, use_on_y=True), RandTransform(tfm=TfmCoord (symmetric_warp), kwargs={‘magnitude’: (-0.2, 0.2)}, p=0.75, resolved={}, do_run=True, is_random=True, use_on_y=True), RandTransform(tfm=TfmAffine (rotate), kwargs={‘degrees’: (-180, 180)}, p=0.75, resolved={}, do_run=True, is_random=True, use_on_y=True), RandTransform(tfm=TfmAffine (zoom), kwargs={‘scale’: (1.0, 1.1), ‘row_pct’: (0, 1), ‘col_pct’: (0, 1)}, p=0.75, resolved={}, do_run=True, is_random=True, use_on_y=True), RandTransform(tfm=TfmLighting (brightness), kwargs={‘change’: (0.4, 0.6)}, p=0.75, resolved={}, do_run=True, is_random=True, use_on_y=True), RandTransform(tfm=TfmLighting (contrast), kwargs={‘scale’: (0.8, 1.25)}, p=0.75, resolved={}, do_run=True, is_random=True, use_on_y=True)]

[RandTransform(tfm = TfmCrop (crop_pad),kwargs = {'row_pct':(0,1),'col_pct':(0,1),'padding_mode':'reflection'},p = 1.0,已解决= {} ,do_run = True,is_random = True,use_on_y = True),RandTransform(tfm = TfmAffine ( dihedral_affine) ,kwargs = {},p = 1.0,resolve = {},do_run = True,is_random = True,use_on_y = True), RandTransform(tfm = TfmCoord (symmetric_warp),kwargs = {'magnitude':(- 0.2,0.2 )},p = 0.75,resolve = {},do_run = True,is_random = True,use_on_y = True),RandTransform(tfm = TfmAffine (旋转),kwargs = {'度数:(-180,180)},p = 0.75,已解析= {},do_run = True,is_random = True,use_on_y = True),RandTransform(tfm = TfmAffine(zoom ), kwargs = {'scale':(1.0,1.1),'row_pct':(0,1),'col_pct':(0,1)},p = 0.75,resolve = {},do_run = True,is_random = True ,use_on_y = True),RandTransform(tfm = TfmLighting(亮度) ,kwargs = {'change':( 0.4,0.6 )},p = 0.75,resolve = {},do_run = True,is_random = True,use_on_y = True) ,RandTransform(tfm = TfmLighting(contrast) ,kwargs = {'scale':( 0.8,1.25 )},p = 0.75,resolve = {},do_run = True,is_random = True,use_on_y = True)]]

tfms [1] (tfms[1])

[RandTransform(tfm=TfmCrop (crop_pad), kwargs={}, p=1.0, resolved={}, do_run=True, is_random=True, use_on_y=True)]

[RandTransform(tfm = TfmCrop(crop_pad) ,kwargs = {},p = 1.0,已解决= {},do_run = True,is_random = True,use_on_y = True)]

使用fastai的ImageDataBunch类加载和准备数据 (Loading and preparing the data with fastai’s ImageDataBunch class)

Image for post

类标签:(Class Labels:)

data.classes :Class Labels for the training samples : [‘healthy’, ‘parkinson’]

data.classes训练样本的类别标签:['healthy','parkinson']

可视化数据 (Visualize the Data)

Image for post
Image for post
Image for post
Image for post

训练模型(Train the Model)

Image for post
Image for post
Image for post

找到最佳学习率(Find the Optimum learning rate)

Image for post
Image for post

应用最佳学习率(Applying optimum learning rate)

Image for post

情节损失(Plot Losses)

Image for post

混淆度量以评估模型性能(Confusion Metrics to evaluate the model performance)

Image for post
Image for post

保存第一个训练后的模型并找到训练和验证的准确性(Save the first trained model and find the training and validation accuracy)

Image for post

Here we could see that we could easily get a validation accuracy 0f 86% for Spiral images with only few lines of code as compared to the opencv+ ML code.

在这里我们可以看到,与opencv + ML代码相比,只需几行代码,就可以轻松获得螺旋图像的验证精度0f 86%。

可视化最大损失 (Visualize top losses)

Image for post
Image for post
Image for post
Image for post

虚拟化螺旋图像的预测(Viualize Predictions for Spiral images)

Image for post
Image for post
Image for post
Image for post

波浪图像的训练模型(Train Model for Wave Images)

Image for post
Image for post

显示结果(Show Results)

Image for post
Image for post
Image for post
Image for post

确定最佳学习率(Optimum Learning rate determined)

Image for post

应用最佳学习率(Applying Optimum Learning Rate)

Image for post
Image for post

评估训练波模型的性能(Evaluate the performance of trained wave model)

Image for post

训练和验证准确性(Training and Validation Accuracies)

Image for post

显示经过训练的模型的结果(Show Results for the trained Model)

Image for post
Image for post
Image for post

This validation accuracy is 83% for wave images with only few lines of code as compared to the opencv+ ML code.

与opencv + ML代码相比,仅几行代码的波形图像的验证精度为83%。

connect

连接

Reference:

参考:

Adrian Rosebrock的开放式简历和深度学习 (Open CV and Deep Learning by Adrian Rosebrock)

翻译自: https://medium.com/swlh/detecting-parkinsons-with-opencv-computer-vision-and-the-spiral-wave-test-e8de3b30f5e6

计算机视觉 opencv


http://www.taodudu.cc/news/show-8414625.html

相关文章:

  • 小脑萎缩和帕金森有什么区别
  • HPC在精神分裂症和帕金森症的个性化非侵入性临床治疗中的应用
  • 英特尔与迈克尔·J·福克斯基金会携手 用先进技术促进帕金森氏症治疗
  • 教你如何用python来爬取电影天堂上面的电影
  • Python爬虫框架:scrapy爬取迅雷电影天堂最新电影ed2k
  • Python爬虫框架:scrapy爬取迅雷电影天堂最新电影!
  • Safari 登录淘宝 提示:您的浏览器限制了第三方Cookie,这将影响您正常登录,您可以更改浏览器的隐私
  • 常见浏览器的User-Agent大全
  • 计算机网络单位换算问题汇总
  • 计算机网络单位换算题,单位换算练习题有那些?
  • 一道非常简单的单位换算题目
  • MAC--SR
  • NR - Scheduling Request
  • (学习opencv二刷) 形态学算法处理
  • 通信标准12之随机接入过程
  • 【泡泡学通信】SR:SCheduling request
  • LTE学习笔记--MAC--SR
  • LTE资源调度 -- 上行调度请求(2)SR
  • LTE资源调度(5)-上行调度请求SR
  • 【ps】新手 学 PS一本通 【书】
  • Go第七篇之规范的接口
  • 支付宝老版本的支付文档
  • 支付宝沙箱支付(java电脑版)
  • 支付宝电脑版二维码Java
  • 应急响应学习
  • 转:APK Crack
  • 解决卡巴斯基6.0自动断开连接重新启动
  • #创新应用#飞速流量压缩仪:移动互联网提速利器!
  • 无源互调分析仪——互调干扰案例分析
  • 自动化仪表
  • 这篇关于计算机视觉 opencv_使用opencv计算机视觉和螺旋波测试检测帕金森的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/577576

    相关文章

    如何使用celery进行异步处理和定时任务(django)

    《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

    使用Python绘制蛇年春节祝福艺术图

    《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

    Jsoncpp的安装与使用方式

    《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

    python使用watchdog实现文件资源监控

    《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

    Python中构建终端应用界面利器Blessed模块的使用

    《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

    springboot整合 xxl-job及使用步骤

    《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

    使用Nginx来共享文件的详细教程

    《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

    Java中switch-case结构的使用方法举例详解

    《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

    Golang使用minio替代文件系统的实战教程

    《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

    使用Python绘制可爱的招财猫

    《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画