西电期末1025.平滑滤波

2024-01-06 15:12
文章标签 期末 滤波 平滑 西电 1025

本文主要是介绍西电期末1025.平滑滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.题目

二.分析与思路

别光看公式,读题干:“位置i的输出为距离i最近的三个输入的平均值”,再看示例,输入几个,输出几个,所以就是输出每个位置距离最近的三个输入的平均值,中间没什么问题,两端根据题意分别还是前三个的均值和后三个的均值。

三.代码实现

#include<bits/stdc++.h>//万能头
int main()
{int n;scanf("%d",&n);int num[n];for(int i=0;i<n;i++){scanf("%d",&num[i]);}printf("%d ",(num[0]+num[1]+num[2])/3);//y0for(int i=0;i<n-2;i++){printf("%d ",(num[i]+num[i+1]+num[i+2])/3);}printf("%d ",(num[n-3]+num[n-2]+num[n-1])/3);//yn
return 0;
}

四.评价

读题很关键,一切按照示例为准!

这篇关于西电期末1025.平滑滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576733

相关文章

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

6.4双边滤波

目录 实验原理 示例代码1 运行结果1 实验代码2 运行结果2 实验原理 双边滤波(Bilateral Filtering)是一种非线性滤波技术,用于图像处理中去除噪声,同时保留边缘和细节。这种滤波器结合了空间邻近性和像素值相似性的双重加权,从而能够在去噪(平滑图像)的同时保留图像的边缘细节。双边滤波器能够在的同时,保持边缘清晰,因此非常适合用于去除噪声和保持图像特征。在Op

Golang支持平滑升级的HTTP服务

前段时间用Golang在做一个HTTP的接口,因编译型语言的特性,修改了代码需要重新编译可执行文件,关闭正在运行的老程序,并启动新程序。对于访问量较大的面向用户的产品,关闭、重启的过程中势必会出现无法访问的情况,从而影响用户体验。 使用Golang的系统包开发HTTP服务,是无法支持平滑升级(优雅重启)的,本文将探讨如何解决该问题。 一、平滑升级(优雅重启)的一般思路 一般情况下,要实现平滑

Golang服务平滑重启

与重载配置相同的是我们也需要通过信号来通知server重启,但关键在于平滑重启,如果只是简单的重启,只需要kill掉,然后再拉起即可。平滑重启意味着server升级的时候可以不用停止业务。 我们先来看下Github上有没有相应的库解决这个问题,然后找到了如下三个库: facebookgo/grace - Graceful restart & zero downtime deploy for G

6.3中值滤波

目录 实验原理 示例代码1 运行结果1 示例代码2 运行结果2 实验原理 中值滤波(Median Filtering)是一种非线性滤波技术,常用于图像处理中去除噪声,特别是在保留边缘的同时减少椒盐噪声(salt-and-pepper noise)。OpenCV中的cv::medianBlur函数可以实现中值滤波。 函数原型 void medianBlur( InputAr

【控制算法 数据处理】一阶滤波算法

简单介绍: 一阶滤波算法是比较常用的滤波算法,它的滤波结果=a*本次采样值+(1-a)*上次滤波结果,其中,a为0~1之间的数。一阶滤波相当于是将新的采样值与上次的滤波结果计算一个加权平均值。a的取值决定了算法的灵敏度,a越大,新采集的值占的权重越大,算法越灵敏,但平顺性差;相反,a越小,新采集的值占的权重越小,灵敏度差,但平顺性好。优点是对周期干扰有良好的抑制作用,适用于波动频率比较高的场合,它

RSSI滤波方法

文章目录 一、均值滤波二、递推平均滤波三、中位值滤波四、狄克逊检验法滤波五、高斯滤波六、速度滤波七、卡尔曼滤波 一、均值滤波 均值滤波是指节点接收到另一节点的多个RSSI值之后,求其算式平均值,作为测试结果 R S S I ‾ = 1 n ∙ ∑ i = 1 n R S S I i \overline{RSSI} = \frac {1}{n} \bullet \sum_{i=1

CUDAPCL ROR点云滤波

文章目录 一、简介二、实现代码三、实现效果参考资料 一、简介 该方法的具体原理为输入的点云中每一个点设定一个范围(半径为r的圆),如果在该范围内没有达到某一个设定的点数值,则该数据点将会被删除,重复上述此过程直到最后一个数据点,即完成该滤波过程。 二、实现代码 ROR.cuh #ifndef ROR_GPU_CUH#define ROR_GPU_CU

matlab频域滤波

步骤: (1)计算原图像f(x,y)的DFT, (2) 讲频谱的零频点移动到频谱图的中心位置; (3)计算滤波器函数H(U,V)与F(U,V)的乘积G(U,V); (4)讲频谱G(U,V)的零频点移回到频谱图的坐上角。 (5)计算(4)的结果的傅立叶反变换g(x,y); (6)取g(x,y)的实部作为最终的滤波后的结果图像。   代码: 大家别激动的啦   代