C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片

本文主要是介绍C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

效果

生成图片特征

查找踢足球的人

测试图片

模型信息

image_model.onnx

text_model.onnx

项目

代码

Form1.cs

Clip.cs

下载


C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片

效果

生成图片特征

查找踢足球的人

测试图片

模型信息

image_model.onnx

Inputs
-------------------------
name:image
tensor:Float[1, 3, 224, 224]
---------------------------------------------------------------

Outputs
-------------------------
name:unnorm_image_features
tensor:Float[1, 512]
---------------------------------------------------------------

text_model.onnx

Inputs
-------------------------
name:text
tensor:Int64[1, 52]
---------------------------------------------------------------

Outputs
-------------------------
name:unnorm_text_features
tensor:Float[1, 512]
---------------------------------------------------------------

项目

代码

Form1.cs


using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        Clip mynet = new Clip("model/image_model.onnx", "model/text_model.onnx", "model/myvocab.txt");

        float[] imagedir_features;
        string image_dir = "test_img";
        StringBuilder sb = new StringBuilder();

        private void button2_Click(object sender, EventArgs e)
        {
            //特征向量 可以存二进制文件或者向量数据库
            imagedir_features = mynet.generate_imagedir_features(image_dir);
            txtInfo.Text = "生成完成!";
            txtInfo.Text += "有" + mynet.imgnum + "张图片,特征向量长度=" + imagedir_features.Length;
        }

        private void button3_Click(object sender, EventArgs e)
        {
            if (imagedir_features == null)
            {
                MessageBox.Show("请先生成图片特征!");
                return;
            }

            sb.Clear();
            txtInfo.Text = "";
            lblInfo.Text = "";
            pictureBox1.Image = null;

            string input_text = txt_input_text.Text;
            if (string.IsNullOrEmpty(input_text))
            {
                return;
            }
            List<Dictionary<string, float>> top5imglist = mynet.input_text_search_image(input_text, imagedir_features, mynet.imglist);

            sb.AppendLine("top5:");
            foreach (var item in top5imglist)
            {
                sb.AppendLine(Path.GetFileName(item.Keys.First()) + "  相似度:" + item[item.Keys.First()].ToString("F2"));
            }

            txtInfo.Text = sb.ToString();
            lblInfo.Text = Path.GetFileName(top5imglist[0].Keys.First());
            pictureBox1.Image = new Bitmap(top5imglist[0].Keys.First());

        }

        private void Form1_Load(object sender, EventArgs e)
        {

        }
    }
}


using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;namespace Onnx_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}Clip mynet = new Clip("model/image_model.onnx", "model/text_model.onnx", "model/myvocab.txt");float[] imagedir_features;string image_dir = "test_img";StringBuilder sb = new StringBuilder();private void button2_Click(object sender, EventArgs e){//特征向量 可以存二进制文件或者向量数据库imagedir_features = mynet.generate_imagedir_features(image_dir);txtInfo.Text = "生成完成!";txtInfo.Text += "有" + mynet.imgnum + "张图片,特征向量长度=" + imagedir_features.Length;}private void button3_Click(object sender, EventArgs e){if (imagedir_features == null){MessageBox.Show("请先生成图片特征!");return;}sb.Clear();txtInfo.Text = "";lblInfo.Text = "";pictureBox1.Image = null;string input_text = txt_input_text.Text;if (string.IsNullOrEmpty(input_text)){return;}List<Dictionary<string, float>> top5imglist = mynet.input_text_search_image(input_text, imagedir_features, mynet.imglist);sb.AppendLine("top5:");foreach (var item in top5imglist){sb.AppendLine(Path.GetFileName(item.Keys.First()) + "  相似度:" + item[item.Keys.First()].ToString("F2"));}txtInfo.Text = sb.ToString();lblInfo.Text = Path.GetFileName(top5imglist[0].Keys.First());pictureBox1.Image = new Bitmap(top5imglist[0].Keys.First());}private void Form1_Load(object sender, EventArgs e){}}
}

Clip.cs

public class Clip
    {
        int inpWidth = 224;
        int inpHeight = 224;
        float[] mean = new float[] { 0.48145466f, 0.4578275f, 0.40821073f };
        float[] std = new float[] { 0.26862954f, 0.26130258f, 0.27577711f };

        int context_length = 52;
        int len_text_feature = 512;

        Net net;
        float[] image_features_input;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<long> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;

        TokenizerBase tokenizer;

        int[] text_tokens_input;
        float[,] text_features_input;

        public int imgnum = 0;
        public List<string> imglist = new List<string>();

        public Clip(string image_modelpath, string text_modelpath, string vocab_path)
        {
            net = CvDnn.ReadNetFromOnnx(image_modelpath);

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行
            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(text_modelpath, options);//model_path 为onnx模型文件的路径
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            load_tokenizer(vocab_path);

        }

        void load_tokenizer(string vocab_path)
        {

            tokenizer = new TokenizerClipChinese();
            tokenizer.load_tokenize(vocab_path);
            text_tokens_input = new int[1024 * context_length];
        }

        Mat normalize_(Mat src)
        {
            Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);

            Mat[] bgr = src.Split();
            for (int i = 0; i < bgr.Length; ++i)
            {
                bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);
            }

            Cv2.Merge(bgr, src);

            foreach (Mat channel in bgr)
            {
                channel.Dispose();
            }

            return src;
        }

        unsafe void generate_image_feature(Mat srcimg)
        {
            Mat temp_image = new Mat();
            Cv2.Resize(srcimg, temp_image, new Size(inpWidth, inpHeight), 0, 0, InterpolationFlags.Cubic);
            Mat normalized_mat = normalize_(temp_image);
            Mat blob = CvDnn.BlobFromImage(normalized_mat);
            net.SetInput(blob);
            //模型推理,读取推理结果
            Mat[] outs = new Mat[1] { new Mat() };
            string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();
            net.Forward(outs, outBlobNames);
            float* ptr_feat = (float*)outs[0].Data;
            int len_image_feature = outs[0].Size(1);  //忽略第0维batchsize=1, len_image_feature是定值512,跟len_text_feature相等的, 也可以写死在类成员变量里
            image_features_input = new float[len_image_feature];
            float norm = 0.0f;
            for (int i = 0; i < len_image_feature; i++)
            {
                norm += ptr_feat[i] * ptr_feat[i];
            }
            norm = (float)Math.Sqrt(norm);
            for (int i = 0; i < len_image_feature; i++)
            {
                image_features_input[i] = ptr_feat[i] / norm;
            }
        }

        unsafe void generate_text_feature(List<string> texts)
        {
            List<List<int>> text_token = new List<List<int>>(texts.Count);
            for (int i = 0; i < texts.Count; i++)
            {
                text_token.Add(new List<int>());
            }

            for (int i = 0; i < texts.Count; i++)
            {
                tokenizer.encode_text(texts[i], text_token[i]);
            }

            if (text_token.Count * context_length > text_tokens_input.Length)
            {
                text_tokens_input = new int[text_token.Count * context_length];
            }

            foreach (int i in text_tokens_input) { text_tokens_input[i] = 0; }

            for (int i = 0; i < text_token.Count; i++)
            {
                if (text_token[i].Count > context_length)
                {
                    Console.WriteLine("text_features index " + i + " ,bigger than " + context_length + "\n");
                    continue;
                }
                for (int j = 0; j < text_token[i].Count; j++)
                {
                    text_tokens_input[i * context_length + j] = text_token[i][j];
                }

            }

            int[] text_token_shape = new int[] { 1, context_length };

            text_features_input = new float[text_token.Count, len_text_feature];

            long[] text_tokens_input_64 = new long[texts.Count * context_length];
            for (int i = 0; i < text_tokens_input_64.Length; i++)
            {
                text_tokens_input_64[i] = text_tokens_input[i];
            }

            for (int i = 0; i < text_token.Count; i++)
            {
                input_tensor = new DenseTensor<long>(text_tokens_input_64, new[] { 1, 52 });
                input_container.Clear();
                input_container.Add(NamedOnnxValue.CreateFromTensor("text", input_tensor));

                //运行 Inference 并获取结果
                result_infer = onnx_session.Run(input_container);

                // 将输出结果转为DisposableNamedOnnxValue数组
                results_onnxvalue = result_infer.ToArray();

                // 读取第一个节点输出并转为Tensor数据
                result_tensors = results_onnxvalue[0].AsTensor<float>();

                float[] text_feature_ptr = results_onnxvalue[0].AsTensor<float>().ToArray();

                float norm = 0.0f;
                for (int j = 0; j < len_text_feature; j++)
                {
                    norm += text_feature_ptr[j] * text_feature_ptr[j];
                }
                norm = (float)Math.Sqrt(norm);
                for (int j = 0; j < len_text_feature; j++)
                {
                    text_features_input[i, j] = text_feature_ptr[j] / norm;
                }

            }
        }

        void softmax(float[] input)
        {
            int length = input.Length;
            float[] exp_x = new float[length];
            float maxVal = input.Max();
            float sum = 0;
            for (int i = 0; i < length; i++)
            {
                float expval = (float)Math.Exp(input[i] - maxVal);
                exp_x[i] = expval;
                sum += expval;
            }
            for (int i = 0; i < length; i++)
            {
                input[i] = exp_x[i] / sum;
            }
        }

        int[] argsort_ascend(float[] array)
        {
            int array_len = array.Length;
            int[] array_index = new int[array_len];
            for (int i = 0; i < array_len; ++i)
            {
                array_index[i] = i;
            }

            var temp = array_index.ToList();

            temp.Sort((pos1, pos2) =>
             {

                 if (array[pos1] < array[pos2])
                 {
                     return -1;
                 }
                 else if (array[pos1] == array[pos2])
                 {
                     return 0;
                 }
                 else
                 {
                     return 0;
                 }

             });

            return temp.ToArray();
        }

        public List<Dictionary<string, float>> input_text_search_image(string text, float[] image_features, List<string> imglist)
        {

            int imgnum = imglist.Count;
            List<string> texts = new List<string> { text };

            generate_text_feature(texts);

            float[] logits_per_image = new float[imgnum];

            for (int i = 0; i < imgnum; i++)
            {
                float sum = 0;
                for (int j = 0; j < len_text_feature; j++)
                {
                    sum += image_features[i * len_text_feature + j] * text_features_input[0, j]; //图片特征向量跟文本特征向量做内积
                }
                logits_per_image[i] = 100 * sum;
            }

            softmax(logits_per_image);

            int[] index = argsort_ascend(logits_per_image);

            List<Dictionary<string, float>> top5imglist = new List<Dictionary<string, float>>(5);

            for (int i = 0; i < 5; i++)
            {
                int ind = index[imgnum - 1 - i];
                Dictionary<string, float> result = new Dictionary<string, float>();
                result.Add(imglist[ind], logits_per_image[ind]);
                top5imglist.Add(result);
            }
            return top5imglist;
        }

        public float[] generate_imagedir_features(string image_dir)
        {

            imglist = Common.listdir(image_dir);
            imgnum = imglist.Count;
            Console.WriteLine("遍历到" + imgnum + "张图片");

            float[] imagedir_features = new float[0];

            for (int i = 0; i < imgnum; i++)
            {
                string imgpath = imglist[i];

                Mat srcimg = Cv2.ImRead(imgpath);

                generate_image_feature(srcimg);

                imagedir_features = imagedir_features.Concat(image_features_input).ToArray();

                srcimg.Dispose();
            }

            return imagedir_features;

        }

    }

public class Clip{int inpWidth = 224;int inpHeight = 224;float[] mean = new float[] { 0.48145466f, 0.4578275f, 0.40821073f };float[] std = new float[] { 0.26862954f, 0.26130258f, 0.27577711f };int context_length = 52;int len_text_feature = 512;Net net;float[] image_features_input;SessionOptions options;InferenceSession onnx_session;Tensor<long> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;TokenizerBase tokenizer;int[] text_tokens_input;float[,] text_features_input;public int imgnum = 0;public List<string> imglist = new List<string>();public Clip(string image_modelpath, string text_modelpath, string vocab_path){net = CvDnn.ReadNetFromOnnx(image_modelpath);// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(text_modelpath, options);//model_path 为onnx模型文件的路径// 创建输入容器input_container = new List<NamedOnnxValue>();load_tokenizer(vocab_path);}void load_tokenizer(string vocab_path){tokenizer = new TokenizerClipChinese();tokenizer.load_tokenize(vocab_path);text_tokens_input = new int[1024 * context_length];}Mat normalize_(Mat src){Cv2.CvtColor(src, src, ColorConversionCodes.BGR2RGB);Mat[] bgr = src.Split();for (int i = 0; i < bgr.Length; ++i){bgr[i].ConvertTo(bgr[i], MatType.CV_32FC1, 1.0 / (255.0 * std[i]), (0.0 - mean[i]) / std[i]);}Cv2.Merge(bgr, src);foreach (Mat channel in bgr){channel.Dispose();}return src;}unsafe void generate_image_feature(Mat srcimg){Mat temp_image = new Mat();Cv2.Resize(srcimg, temp_image, new Size(inpWidth, inpHeight), 0, 0, InterpolationFlags.Cubic);Mat normalized_mat = normalize_(temp_image);Mat blob = CvDnn.BlobFromImage(normalized_mat);net.SetInput(blob);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = net.GetUnconnectedOutLayersNames().ToArray();net.Forward(outs, outBlobNames);float* ptr_feat = (float*)outs[0].Data;int len_image_feature = outs[0].Size(1);  //忽略第0维batchsize=1, len_image_feature是定值512,跟len_text_feature相等的, 也可以写死在类成员变量里image_features_input = new float[len_image_feature];float norm = 0.0f;for (int i = 0; i < len_image_feature; i++){norm += ptr_feat[i] * ptr_feat[i];}norm = (float)Math.Sqrt(norm);for (int i = 0; i < len_image_feature; i++){image_features_input[i] = ptr_feat[i] / norm;}}unsafe void generate_text_feature(List<string> texts){List<List<int>> text_token = new List<List<int>>(texts.Count);for (int i = 0; i < texts.Count; i++){text_token.Add(new List<int>());}for (int i = 0; i < texts.Count; i++){tokenizer.encode_text(texts[i], text_token[i]);}if (text_token.Count * context_length > text_tokens_input.Length){text_tokens_input = new int[text_token.Count * context_length];}foreach (int i in text_tokens_input) { text_tokens_input[i] = 0; }for (int i = 0; i < text_token.Count; i++){if (text_token[i].Count > context_length){Console.WriteLine("text_features index " + i + " ,bigger than " + context_length + "\n");continue;}for (int j = 0; j < text_token[i].Count; j++){text_tokens_input[i * context_length + j] = text_token[i][j];}}int[] text_token_shape = new int[] { 1, context_length };text_features_input = new float[text_token.Count, len_text_feature];long[] text_tokens_input_64 = new long[texts.Count * context_length];for (int i = 0; i < text_tokens_input_64.Length; i++){text_tokens_input_64[i] = text_tokens_input[i];}for (int i = 0; i < text_token.Count; i++){input_tensor = new DenseTensor<long>(text_tokens_input_64, new[] { 1, 52 });input_container.Clear();input_container.Add(NamedOnnxValue.CreateFromTensor("text", input_tensor));//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();float[] text_feature_ptr = results_onnxvalue[0].AsTensor<float>().ToArray();float norm = 0.0f;for (int j = 0; j < len_text_feature; j++){norm += text_feature_ptr[j] * text_feature_ptr[j];}norm = (float)Math.Sqrt(norm);for (int j = 0; j < len_text_feature; j++){text_features_input[i, j] = text_feature_ptr[j] / norm;}}}void softmax(float[] input){int length = input.Length;float[] exp_x = new float[length];float maxVal = input.Max();float sum = 0;for (int i = 0; i < length; i++){float expval = (float)Math.Exp(input[i] - maxVal);exp_x[i] = expval;sum += expval;}for (int i = 0; i < length; i++){input[i] = exp_x[i] / sum;}}int[] argsort_ascend(float[] array){int array_len = array.Length;int[] array_index = new int[array_len];for (int i = 0; i < array_len; ++i){array_index[i] = i;}var temp = array_index.ToList();temp.Sort((pos1, pos2) =>{if (array[pos1] < array[pos2]){return -1;}else if (array[pos1] == array[pos2]){return 0;}else{return 0;}});return temp.ToArray();}public List<Dictionary<string, float>> input_text_search_image(string text, float[] image_features, List<string> imglist){int imgnum = imglist.Count;List<string> texts = new List<string> { text };generate_text_feature(texts);float[] logits_per_image = new float[imgnum];for (int i = 0; i < imgnum; i++){float sum = 0;for (int j = 0; j < len_text_feature; j++){sum += image_features[i * len_text_feature + j] * text_features_input[0, j]; //图片特征向量跟文本特征向量做内积}logits_per_image[i] = 100 * sum;}softmax(logits_per_image);int[] index = argsort_ascend(logits_per_image);List<Dictionary<string, float>> top5imglist = new List<Dictionary<string, float>>(5);for (int i = 0; i < 5; i++){int ind = index[imgnum - 1 - i];Dictionary<string, float> result = new Dictionary<string, float>();result.Add(imglist[ind], logits_per_image[ind]);top5imglist.Add(result);}return top5imglist;}public float[] generate_imagedir_features(string image_dir){imglist = Common.listdir(image_dir);imgnum = imglist.Count;Console.WriteLine("遍历到" + imgnum + "张图片");float[] imagedir_features = new float[0];for (int i = 0; i < imgnum; i++){string imgpath = imglist[i];Mat srcimg = Cv2.ImRead(imgpath);generate_image_feature(srcimg);imagedir_features = imagedir_features.Concat(image_features_input).ToArray();srcimg.Dispose();}return imagedir_features;}}

下载

源码下载

这篇关于C# Onnx Chinese CLIP 通过一句话从图库中搜出来符合要求的图片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575678

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调