从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法

本文主要是介绍从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PhaseFinder

## 概览,不翻译了,大家自己看吧
The PhaseFinder algorithm is designed to detect DNA inversion mediated phase variation in bacterial genomes using genomic or metagenomic sequencing data. It works by identifying regions flanked by inverted repeats, mimicking their inversion in silico, and identifying regions where sequencing reads support both orientations. Here, we define phase variation as "a process employed by bacteria to generate frequent and reversible changes within specific hypermutable loci, introducing phenotypic diversity into clonal populations”. Not every region detected by PhaseFinder will directly result in phase variation, but the results should be highly enriched for regions that do. 

github: https://github.com/XiaofangJ/PhaseFinder

## Prerequisites,安装依赖
+ [Biopython](https://biopython.org/)
+ [pandas](https://pandas.pydata.org)
+ [samtools](http://samtools.sourceforge.net/) (>=1.4)
+ [bowtie](https://github.com/BenLangmead/bowtie)(>=version 1.2.0)
+ [einverted](http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/einverted.html)
+ [bedops](https://bedops.readthedocs.io/en/latest/)
+ [bedtools](https://bedtools.readthedocs.io/en/latest/)

To install PhaseFinder,安装

git clone git@github.com:nlm-irp-jianglab/PhaseFinder.git
cd PhaseFinder
conda env create --file environment.yml
conda activate PhaseFinder

快速开始
All you need to get started is a genome (in fasta format) you would like to search for invertible DNA regions and genomic sequencing data (preferrably Illumina in fastq format) from the same organism, or metagenomic sequencing data from a sample containing the organism (preferrably Illumina in fastq format). 

To test PhaseFinder, you can use the example files (genome: test.fa, genomic data: p1.fq, p2.fq) Example:

# Identify regions flanked by inverted repeats 
python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -g 15 85 -p # Mimic inversion
python PhaseFinder.py create -f ./data/test.fa -t ./data/test.einverted.tab -s 1000 -i ./data/test.ID.fasta# Identify regions where sequencing reads support both orientations 
python PhaseFinder.py ratio -i ./data/test.ID.fasta -1 ./data/p1.fq -2 ./data/p2.fq -p 16 -o ./data/out

If successful, the output will be in data/out.ratio.txt

In this example, there is one real example of an invertible DNA region "am_0171_0068_d5_0006:81079-81105-81368-81394" because only this region has reads supporting both the F and R orientation. 

---

教程Tutorial
1. Generate a position table of regions flanked by inverted repeats 
Users can identify inverted repeats using the "PhaseFinder.py locate" command, or generate their own table.

1.1. Generate the position table with the PhaseFinder script

Usage: PhaseFinder.py locate [OPTIONS]Locate putative inverted regionsOptions:-f, --fasta PATH        Input genome sequence file in fasta format[required]-t, --tab PATH          Output table with inverted repeats coordinates[required]-e, --einv TEXT         Einverted parameters, if unspecified run withPhaseFinder default pipeline-m, --mismatch INTEGER  Max number of mismatches allowed between IR pairs,used with -einv (default:3)-r, --IRsize INTEGER    Max size of the inverted repeats, used with -einv(default:50)-g, --gcRatio MIN MAX   The minimum and maximum value of GC ratio-p, --polymer           Remove homopolymer inverted repeats--help                  Show this message and exit.

Input: A fasta file containing the genome sequence
Output: A table file containing the postion information of invereted repeats in the genome

Examples:
* Run the default PhaseFinder locate parameters

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab 

Run the default PhaseFinder locate parameters and remove inverted repeats with GC content lower than 15% and higher than 85% or with homopolymers

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -g 15 85 -p 

* Run with the specified einverted parameters "-maxrepeat 750 -gap 100 -threshold 51 -match 5 -mismatch -9" 

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -e "-maxrepeat 750 -gap 100 -threshold 51 -match 5 -mismatch -9" 


1.2. Generate the position table with other tools
You can identify regions flanked by inverted repeats directly with tools such as [einverted](http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/einverted.html) and [palindrome](http://emboss.sourceforge.net/apps/cvs/emboss/apps/palindrome.html). 

Prepare the output into the following format:

A table file with five columns (tab delimited):

 Column name | Explanation                                                   |
-------------|---------------------------------------------------------------|Scaffold    | The scaffold or contig name where the inverted repeat is detectedpos A       | The start coordinate of the first inverted repeat (0-based)pos B       | The end coordinate of the first inverted repeat (1-based)pos C       | The start coordinate of the second inverted repeat (0-based)pos D       | The end coordinate of the second inverted repeat (1-based)---

2. Mimic inversion in silico to create a database of inverted sequences

Usage: PhaseFinder.py create [OPTIONS]Create inverted fasta fileOptions:-f, --fasta PATH         Input genome sequence file in fasta format[required]-t, --tab PATH           Table with inverted repeat coordinates  [required]-s, --flanksize INTEGER  Base pairs of flanking DNA on both sides of theidentified inverted repeats  [required]-i, --inv PATH           Output path of the inverted fasta file  [required]--help                   Show this message and exit.

Input
* The position table from step 1

 Output
* A fasta file containing inverted (R) and non-inverted (F) putative invertible DNA regions flanked by sequences of specified length (bowtie indexed)
* A table file (with suffix ".info.tab") describing the location of inverted repeats in the above fasta file---
3. Align sequence reads to inverted sequence database and calculate the ratio of reads aligning to the F or R orienation. 

Usage: PhaseFinder.py ratio [OPTIONS]Align reads to inverted fasta fileOptions:-i, --inv PATH         Input path of the inverted fasta file  [required]-1, --fastq1 PATH      First pair in fastq  [required]-2, --fastq2 PATH      Second pair in fastq  [required]-p, --threads INTEGER  Number of threads-o, --output TEXT      Output prefix  [required]--help                 Show this message and exit.

输入 Input
* Output from step 2
* fastq file of genomic or metagenomic sequence used to verify DNA inversion
* Number of threads used for bowtie alignment and samtools process
输出Output
* A table file (with suffix ".ratio.txt") containing the reads that supporting either R or F orientation of invertible DNA

 Column name | Explanation                                                                 |
-------------|-----------------------------------------------------------------------------|
Sequence     | Putative invertible regions(Format:Scaffold:posA-posB-posC-posD)
Pe_F         | The number of reads supprting the F orientation with paired-end information
Pe_R         | The number of reads supprting the R orientation with paired-end information
Pe_ratio     | Pe_R/(Pe_F + Pe_R). The percent of reads supporting the R orientation with the paired-end method
Span_F       | The number of reads supporting the F orientation spanning the inverted repeat by at least 10 bp on either side
Span_R       | The number of reads supporting the R orientation spanning the inverted repeat by at least 10 bp on either side
Span_ratio   | Span_R/(Span_F + Span_R). The percent of reads supporting the R orientation with the spanning method. 

True invertible regions have reads supporting both the F and R orientation. We recommend combining the information from both the paired-end (Pe) and spanning (Span) methods to find valid invertible DNA regions. Our default is to classify a region as invertible if at least 1% of reads support the R orientation with a minimum Pe_R > 5 and Span_R > 3. 

4. (Optional) Subset for intergenic invertible DNA regions 

If you are especially interested in intergenic regulatory regions, such as promoters, you can remove predicted invertible regions overlapping with coding sequences (CDS). First, obtain an annotation for the genome of interest from the NCBI or that you genereate yourself in GFF3 format. Second, subsubset the annotation for CDS regions only. Third, use the following command to process the output of PhaseFinder step 3 to obtain a list of intergenic putative invertible DNA regions.

sed '1d' output_from_phasefinder.ratio.txt| awk '{print $1"\t"$0}'|sed 's/:/\t/;s/-[^\t]*-/\t/'|sortBed |closestBed  -a - -b annotation.gff  -d |awk '$20!=0{print $3}' > intergenic_IDR.txt

Citation
Jiang X, Hall AB, et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut, *Science* (2019) [DOI: 10.1126/science.aau5238](http://science.sciencemag.org/content/363/6423/181)http://science.sciencemag.org/content/363/6423/181

这篇关于从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575561

相关文章

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

mac安装nvm(node.js)多版本管理实践步骤

《mac安装nvm(node.js)多版本管理实践步骤》:本文主要介绍mac安装nvm(node.js)多版本管理的相关资料,NVM是一个用于管理多个Node.js版本的命令行工具,它允许开发者在... 目录NVM功能简介MAC安装实践一、下载nvm二、安装nvm三、安装node.js总结NVM功能简介N

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

MySQL安装时initializing database失败的问题解决

《MySQL安装时initializingdatabase失败的问题解决》本文主要介绍了MySQL安装时initializingdatabase失败的问题解决,文中通过图文介绍的非常详细,对大家的学... 目录问题页面:解决方法:问题页面:解决方法:1.勾选红框中的选项:2.将下图红框中全部改为英