从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法

本文主要是介绍从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PhaseFinder

## 概览,不翻译了,大家自己看吧
The PhaseFinder algorithm is designed to detect DNA inversion mediated phase variation in bacterial genomes using genomic or metagenomic sequencing data. It works by identifying regions flanked by inverted repeats, mimicking their inversion in silico, and identifying regions where sequencing reads support both orientations. Here, we define phase variation as "a process employed by bacteria to generate frequent and reversible changes within specific hypermutable loci, introducing phenotypic diversity into clonal populations”. Not every region detected by PhaseFinder will directly result in phase variation, but the results should be highly enriched for regions that do. 

github: https://github.com/XiaofangJ/PhaseFinder

## Prerequisites,安装依赖
+ [Biopython](https://biopython.org/)
+ [pandas](https://pandas.pydata.org)
+ [samtools](http://samtools.sourceforge.net/) (>=1.4)
+ [bowtie](https://github.com/BenLangmead/bowtie)(>=version 1.2.0)
+ [einverted](http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/einverted.html)
+ [bedops](https://bedops.readthedocs.io/en/latest/)
+ [bedtools](https://bedtools.readthedocs.io/en/latest/)

To install PhaseFinder,安装

git clone git@github.com:nlm-irp-jianglab/PhaseFinder.git
cd PhaseFinder
conda env create --file environment.yml
conda activate PhaseFinder

快速开始
All you need to get started is a genome (in fasta format) you would like to search for invertible DNA regions and genomic sequencing data (preferrably Illumina in fastq format) from the same organism, or metagenomic sequencing data from a sample containing the organism (preferrably Illumina in fastq format). 

To test PhaseFinder, you can use the example files (genome: test.fa, genomic data: p1.fq, p2.fq) Example:

# Identify regions flanked by inverted repeats 
python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -g 15 85 -p # Mimic inversion
python PhaseFinder.py create -f ./data/test.fa -t ./data/test.einverted.tab -s 1000 -i ./data/test.ID.fasta# Identify regions where sequencing reads support both orientations 
python PhaseFinder.py ratio -i ./data/test.ID.fasta -1 ./data/p1.fq -2 ./data/p2.fq -p 16 -o ./data/out

If successful, the output will be in data/out.ratio.txt

In this example, there is one real example of an invertible DNA region "am_0171_0068_d5_0006:81079-81105-81368-81394" because only this region has reads supporting both the F and R orientation. 

---

教程Tutorial
1. Generate a position table of regions flanked by inverted repeats 
Users can identify inverted repeats using the "PhaseFinder.py locate" command, or generate their own table.

1.1. Generate the position table with the PhaseFinder script

Usage: PhaseFinder.py locate [OPTIONS]Locate putative inverted regionsOptions:-f, --fasta PATH        Input genome sequence file in fasta format[required]-t, --tab PATH          Output table with inverted repeats coordinates[required]-e, --einv TEXT         Einverted parameters, if unspecified run withPhaseFinder default pipeline-m, --mismatch INTEGER  Max number of mismatches allowed between IR pairs,used with -einv (default:3)-r, --IRsize INTEGER    Max size of the inverted repeats, used with -einv(default:50)-g, --gcRatio MIN MAX   The minimum and maximum value of GC ratio-p, --polymer           Remove homopolymer inverted repeats--help                  Show this message and exit.

Input: A fasta file containing the genome sequence
Output: A table file containing the postion information of invereted repeats in the genome

Examples:
* Run the default PhaseFinder locate parameters

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab 

Run the default PhaseFinder locate parameters and remove inverted repeats with GC content lower than 15% and higher than 85% or with homopolymers

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -g 15 85 -p 

* Run with the specified einverted parameters "-maxrepeat 750 -gap 100 -threshold 51 -match 5 -mismatch -9" 

python PhaseFinder.py locate -f ./data/test.fa -t ./data/test.einverted.tab -e "-maxrepeat 750 -gap 100 -threshold 51 -match 5 -mismatch -9" 


1.2. Generate the position table with other tools
You can identify regions flanked by inverted repeats directly with tools such as [einverted](http://emboss.sourceforge.net/apps/release/6.6/emboss/apps/einverted.html) and [palindrome](http://emboss.sourceforge.net/apps/cvs/emboss/apps/palindrome.html). 

Prepare the output into the following format:

A table file with five columns (tab delimited):

 Column name | Explanation                                                   |
-------------|---------------------------------------------------------------|Scaffold    | The scaffold or contig name where the inverted repeat is detectedpos A       | The start coordinate of the first inverted repeat (0-based)pos B       | The end coordinate of the first inverted repeat (1-based)pos C       | The start coordinate of the second inverted repeat (0-based)pos D       | The end coordinate of the second inverted repeat (1-based)---

2. Mimic inversion in silico to create a database of inverted sequences

Usage: PhaseFinder.py create [OPTIONS]Create inverted fasta fileOptions:-f, --fasta PATH         Input genome sequence file in fasta format[required]-t, --tab PATH           Table with inverted repeat coordinates  [required]-s, --flanksize INTEGER  Base pairs of flanking DNA on both sides of theidentified inverted repeats  [required]-i, --inv PATH           Output path of the inverted fasta file  [required]--help                   Show this message and exit.

Input
* The position table from step 1

 Output
* A fasta file containing inverted (R) and non-inverted (F) putative invertible DNA regions flanked by sequences of specified length (bowtie indexed)
* A table file (with suffix ".info.tab") describing the location of inverted repeats in the above fasta file---
3. Align sequence reads to inverted sequence database and calculate the ratio of reads aligning to the F or R orienation. 

Usage: PhaseFinder.py ratio [OPTIONS]Align reads to inverted fasta fileOptions:-i, --inv PATH         Input path of the inverted fasta file  [required]-1, --fastq1 PATH      First pair in fastq  [required]-2, --fastq2 PATH      Second pair in fastq  [required]-p, --threads INTEGER  Number of threads-o, --output TEXT      Output prefix  [required]--help                 Show this message and exit.

输入 Input
* Output from step 2
* fastq file of genomic or metagenomic sequence used to verify DNA inversion
* Number of threads used for bowtie alignment and samtools process
输出Output
* A table file (with suffix ".ratio.txt") containing the reads that supporting either R or F orientation of invertible DNA

 Column name | Explanation                                                                 |
-------------|-----------------------------------------------------------------------------|
Sequence     | Putative invertible regions(Format:Scaffold:posA-posB-posC-posD)
Pe_F         | The number of reads supprting the F orientation with paired-end information
Pe_R         | The number of reads supprting the R orientation with paired-end information
Pe_ratio     | Pe_R/(Pe_F + Pe_R). The percent of reads supporting the R orientation with the paired-end method
Span_F       | The number of reads supporting the F orientation spanning the inverted repeat by at least 10 bp on either side
Span_R       | The number of reads supporting the R orientation spanning the inverted repeat by at least 10 bp on either side
Span_ratio   | Span_R/(Span_F + Span_R). The percent of reads supporting the R orientation with the spanning method. 

True invertible regions have reads supporting both the F and R orientation. We recommend combining the information from both the paired-end (Pe) and spanning (Span) methods to find valid invertible DNA regions. Our default is to classify a region as invertible if at least 1% of reads support the R orientation with a minimum Pe_R > 5 and Span_R > 3. 

4. (Optional) Subset for intergenic invertible DNA regions 

If you are especially interested in intergenic regulatory regions, such as promoters, you can remove predicted invertible regions overlapping with coding sequences (CDS). First, obtain an annotation for the genome of interest from the NCBI or that you genereate yourself in GFF3 format. Second, subsubset the annotation for CDS regions only. Third, use the following command to process the output of PhaseFinder step 3 to obtain a list of intergenic putative invertible DNA regions.

sed '1d' output_from_phasefinder.ratio.txt| awk '{print $1"\t"$0}'|sed 's/:/\t/;s/-[^\t]*-/\t/'|sortBed |closestBed  -a - -b annotation.gff  -d |awk '$20!=0{print $3}' > intergenic_IDR.txt

Citation
Jiang X, Hall AB, et al. Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut, *Science* (2019) [DOI: 10.1126/science.aau5238](http://science.sciencemag.org/content/363/6423/181)http://science.sciencemag.org/content/363/6423/181

这篇关于从细菌基因组中提取噬菌体变异序列工具PhaseFinder的介绍、安装和使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575561

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法