浅谈指数移动平均(ema)

2024-01-06 03:20
文章标签 平均 浅谈 移动 指数 ema

本文主要是介绍浅谈指数移动平均(ema),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

经常在各种代码中看到指数移动平均(比如我专注的网络传输领域),但却不曾想到它就是诠释世界的方法,我们每个人都在被这种方式 “平均”…

今天说说指数移动平均(或移动指数平均,Exponential Moving Average)。

能查到的资料都侧重于其数学形式和实现,比如卷积和 python,这一点不再赘述,所以要写点内涵,物理意义和哲学。

指数移动平均在我们遇到的很多时间序采样中应用甚广,比如 tcp 的 srtt,它在形式上如下:

V n = ( 1 − β ) ∗ V n − 1 + β ∗ C V_n=(1-\beta)*V_{n-1}+\beta*C Vn=(1β)Vn1+βC

其中 C 为当前采样值,而 Vn 就是该采样序列的指数移动平均。

ema 的形式极端简洁,它只需要拿当前采用进行增量计算,不需要保存任何历史采样,其形式中,beta 为当下值权重,1 - beta 则留给过往,这非常符合我们的思维习惯。

我们认识的每一件事物,其本质都在采样,我们将当前采用叠加在对该采用的历史记忆之上,一杯敬当下,一杯敬过往,形成对世界的理解,形成我们的观点,我们的整个世界每时每刻对每件事物都在做指数移动平均。

将形式展开,我们将发现我们理解世界的过程:
V n = β ∗ C + ( 1 − β ) ∗ V n − 1 V_n=\beta*C+(1-\beta)*V_{n-1} Vn=βC+(1β)Vn1
V n = β ∗ C n + ( 1 − β ) ∗ ( β ∗ C n − 1 + ( 1 − β ) ∗ V n − 2 ) V_n=\beta*C_n+(1-\beta)*(\beta*C_{n-1}+(1-\beta)*V_{n-2}) Vn=βCn+(1β)(βCn1+(1β)Vn2)

V n = β ∗ ( 1 − β ) 0 ∗ C n + β ∗ ( 1 − β ) 1 ∗ C n − 1 + β ∗ ( 1 − β ) 2 ∗ C n − 2 + β ∗ ( 1 − β ) 3 ∗ C n − 3 + . . . β ∗ ( 1 − β ) n ∗ C 0 = Σ m = 0 n ( 1 − β ) m ∗ β C n − m V_n=\beta*(1-\beta)^0*C_n+\beta*(1-\beta)^1*C_{n-1}+\beta*(1-\beta)^2*C_{n-2}+\beta*(1-\beta)^3*C_{n-3}+...\beta*(1-\beta)^n*C_0=\Sigma_{m=0}^{n}{(1-\beta)^m*\beta C_{n-m}} Vn=β(1β)0Cn+β(1β)1Cn1+β(1β)2Cn2+β(1β)3Cn3+...β(1β)nC0=Σm=0n(1β)mβCnm

这里不讲卷积的形式,只从物理意义上理解 Vn 的每一项都是一个采样值 Cx 和一个 1 - beta 次幂的乘积的原因。下面开始。

假设我们的大脑能无差别均匀等价记忆所有采样值,我们的记忆是:

M = { C n , C n − 1 , C n − 2 , C n − 3 , . . . } M=\{C_{n},C_{n-1},C_{n-2},C_{n-3},...\} M={Cn,Cn1,Cn2,Cn3,...}

然而我们不可能无差别记住所有采样,我们记忆容量有限,我们倾向于逐渐忘掉过往。由于历史记忆存在,当前采样仅能占据一部分记忆空间,这就是 β ∗ C \beta*C βC,那么 1 − β 1-\beta 1β 的份额将留给过往,所有的过往将共享这 1 − β 1-\beta 1β 的份额,这意味着随着新采样的不断进入,每一个历史采样必须衰减,历史越久的样本衰减越厉害,即 “逐渐忘掉过往” 。

M 集合按照历史时间序排序采样值 C,由于它进入记忆时均以 beta 份额压缩,事实上的 M 为:

M = { β ∗ C n , β ∗ C n − 1 , β ∗ C n − 2 , β ∗ C n − 3 , . . . } M=\{\beta*C_{n},\beta*C_{n-1},\beta*C_{n-2},\beta*C_{n-3},...\} M={βCn,βCn1,βCn2,βCn3,...}

它的每一项被一个同样的按历史时间序加速衰减的集合过滤:

F = { ( 1 − β ) 0 , ( 1 − β ) 1 , ( 1 − β ) 2 , ( 1 − β ) 3 , . . . } F=\{(1-\beta)^0,(1-\beta)^1,(1-\beta)^2,(1-\beta)^3,...\} F={(1β)0,(1β)1,(1β)2,(1β)3,...}

把集合 M 往下漏被集合 F 阻隔过滤,就形成了新的集合 V:

V = { β ∗ C n ∗ ( 1 − β ) 0 , β ∗ C n − 1 ∗ ( 1 − β ) 1 , β ∗ C n − 2 ∗ ( 1 − β ) 2 , β ∗ C n − 3 ∗ ( 1 − β ) 3 , . . . } V=\{\beta*C_n*(1-\beta)^0,\beta*C_{n-1}*(1-\beta)^1,\beta*C_{n-2}*(1-\beta)^2,\beta*C_{n-3}*(1-\beta)^3,...\} V={βCn(1β)0,βCn1(1β)1,βCn2(1β)2,βCn3(1β)3,...}

这就是指数移动平均的各项,看这相乘的形式当然可以把它理解成某种加权,但名称不重要。而它恰好可以被规整为一种简洁的递推式:

V n = ( 1 − β ) ∗ V n − 1 + β ∗ C V_n=(1-\beta)*V_{n-1}+\beta*C Vn=(1β)Vn1+βC

这就是历史记忆的运转方式。指数移动平均的本质在于一个样本的影响力以何种程度衰减到微不足道的地步,毕竟我们没人在乎自己 1 万年前的祖先是吃肉还是喝粥。

每个时代都认为自己的时代最特殊,最重要,但很快就被下个时代取而代之,淹没在历史长河。谁都逃不过指数移动被平均,过不了 100 年,人人乐道的改变世界的信息时代也将不过是一场平凡的技术革新罢了。

beta 如何选择取决于你想保存多久的记忆,或者说你容忍多久以前的采样可以忽略不计。

如果你希望的记忆周期为 100,在上述集合 V 中,数到第 100 个元素,它的衰减系数是集合 F 的第 100 项 (1 - beta)^99,只要它足够小,它后面的就相当于被彻底遗忘忽略不计了。

多小算足够小呢?取决于你自己。比如你认为 0.2 就足够小了,那就求解 (1 - beta)^99 > 0.2,选择一个 beta 即可。

前几天我论述的 dctcp,alpha 的系数 g 如何算呢:

α = ( 1 − g ) ∗ α + g ∗ F \alpha=(1-g)*\alpha+g*F α=(1g)α+gF

一个 F 需要延展到整个拥塞周期,在该周期内它均需要表现出影响力,设一个拥塞周期为 T,选定一个足够小到不被在乎的数 Q,只要在满足 ( 1 − g ) T > Q (1-g)^T>Q (1g)T>Q的 g 调得一手好参数即可。

如果既不知道什么是足够小,也不知道采样值的影响力周期,那就选择 1 / e 好了,因为 ( 1 − r ) 1 r (1-r)^{\frac{1}{r}} (1r)r1 的极限就是 1 / e,此时就求 ( 1 − β ) 1 β = 1 e (1-\beta)^{\frac{1}{\beta}}=\dfrac{1}{e} (1β)β1=e1 β 1 1 − β = 1 e \beta^{\frac{1}{1-\beta}}=\dfrac{1}{e} β1β1=e1就好,取决于你偏好当前还是偏好过往。

浙江温州皮鞋湿,下雨进水不会胖。

这篇关于浅谈指数移动平均(ema)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575063

相关文章

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

我在移动打工的日志

客户:给我搞一下录音 我:不会。不在服务范围。 客户:是不想吧 我:笑嘻嘻(气笑) 客户:小姑娘明明会,却欺负老人 我:笑嘻嘻 客户:那我交话费 我:手机号 客户:给我搞录音 我:不会。不懂。没搞过。 客户:那我交话费 我:手机号。这是电信的啊!!我这是中国移动!! 客户:我不管,我要充话费,充话费是你们的 我:可是这是移动!!中国移动!! 客户:我这是手机号 我:那又如何,这是移动!你是电信!!

用Unity2D制作一个人物,实现移动、跳起、人物静止和动起来时的动画:中(人物移动、跳起、静止动作)

上回我们学到创建一个地形和一个人物,今天我们实现一下人物实现移动和跳起,依次点击,我们准备创建一个C#文件 创建好我们点击进去,就会跳转到我们的Vision Studio,然后输入这些代码 using UnityEngine;public class Move : MonoBehaviour // 定义一个名为Move的类,继承自MonoBehaviour{private Rigidbo

简单的角色响应鼠标而移动

actor类 //处理移动距离,核心是找到角色坐标在世界坐标的向量的投影(x,y,z),然后在世界坐标中合成,此CC是在地面行走,所以Y轴投影始终置为0; using UnityEngine; using System.Collections; public class actor : MonoBehaviour { public float speed=0.1f; CharacterCo

浅谈PHP5中垃圾回收算法(Garbage Collection)的演化

前言 PHP是一门托管型语言,在PHP编程中程序员不需要手工处理内存资源的分配与释放(使用C编写PHP或Zend扩展除外),这就意味着PHP本身实现了垃圾回收机制(Garbage Collection)。现在如果去PHP官方网站(php.net)可以看到,目前PHP5的两个分支版本PHP5.2和PHP5.3是分别更新的,这是因为许多项目仍然使用5.2版本的PHP,而5.3版本对5.2并不是完

物联网之流水LED灯、正常流水灯、反复流水灯、移动流水灯

MENU 硬件电路设计软件程序设计正常流水LED灯反复流水LED灯移动流水LED灯 硬件电路设计 材料名称数量直插式LED1kΩ电阻杜邦线(跳线)若干面包板1 每一个LED的正极与开发板一个GPIO引脚相连,并串联一个电阻,负极接GND。 当然也可以选择只使用一个电阻。 软件程序设计 正常流水LED灯 因为要用到多个GPIO引脚,所以最好把所有的GPI

12C 新特性,MOVE DATAFILE 在线移动 包括system, 附带改名 NID ,cdb_data_files视图坏了

ALTER DATABASE MOVE DATAFILE  可以改名 可以move file,全部一个命令。 resue 可以重用,keep好像不生效!!! system照移动不误-------- SQL> select file_name, status, online_status from dba_data_files where tablespace_name='SYSTEM'

《C++中的移动构造函数与移动赋值运算符:解锁高效编程的最佳实践》

在 C++的编程世界中,移动构造函数和移动赋值运算符是提升程序性能和效率的重要工具。理解并正确运用它们,可以让我们的代码更加高效、简洁和优雅。 一、引言 随着现代软件系统的日益复杂和对性能要求的不断提高,C++程序员需要不断探索新的技术和方法来优化代码。移动构造函数和移动赋值运算符的出现,为解决资源管理和性能优化问题提供了有力的手段。它们允许我们在不进行不必要的复制操作的情况下,高效地转移资源

创建一个大的DIV,里面的包含两个DIV是可以自由移动

创建一个大的DIV,里面的包含两个DIV是可以自由移动 <body>         <div style="position: relative; background:#DDF8CF;line-height: 50px"> <div style="text-align: center; width: 100%;padding-top: 0px;"><h3>定&nbsp;位&nbsp;

浅谈java向上转型和乡下转型

首先学习每一种知识都需要弄明白这知识是用来干什么使用的 简单理解:当对象被创建时,它可以被传递给这些方法中的任何一个,这意味着它依次被向上转型为每一个接口,由于java中这个设计接口的模式,使得这项工作不需要程序员付出任何特别的努力。 向上转型的作用:1、为了能够向上转型为多个基类型(由此而带来的灵活性) 2、使用接口的第二个原因却是与使用抽象基类相同,防止客户端创建该类的对象,并确保这仅仅