Matplotlib实战_HM数据可视化

2024-01-05 10:36

本文主要是介绍Matplotlib实战_HM数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、先前准备
    • 1.导入必备工具包
    • 2.读取数据
  • 二、Articles数据
    • 1.打印查看前5行数据
    • 2.查看部分字段频次统计
    • 3.制作云图
  • 三、Customers数据
    • 1.打印前5行数据
    • 2.查看客户年龄分布图
    • 3.去重查看会员俱乐部状态
    • 4.打印查看该列数据
    • 5.查看会员俱乐部状态数量,绘制条形图
    • 6.查看H&M 可以向客户发送新闻的频率,绘制条形图
  • 四、Transactions 数据
    • 1.打印查看前5行数据
    • 2.查看销售渠道1、销售渠道2、销售全渠道数据
    • 3.articles 数据与 transactions 数据做拼接,其一字段做时间类型转化
    • 4.部分字段按月求价格均值走势
  • 五、Images 数据
    • 查看特定图片


H&M数据集介绍
1.数据集描述

对于这个挑战,你将获得顾客在一段时间内的购买历史记录,以及相关的元数据。你的任务是预测在训练数据结束后的7天内,每个顾客将购买哪些商品。在这段时间内没有进行任何购买的顾客将被排除在评分之外。

2.文件

  1. images/:包含与每个商品ID对应的图片的文件夹;图片被放置在以商品ID的前三位数字命名的子文件夹中;请注意,并非所有的商品ID值都有对应的图片。

  2. articles.csv:每个可购买商品ID的详细元数据。

  3. customers.csv:数据集中每个顾客ID的元数据。

  4. transactions_train.csv:训练数据,包括每个日期每个顾客的购买记录,以及额外的信息。重复的行表示同一商品的多次购买。你的任务是预测在训练数据期间结束后的7天内,每个顾客将购买哪些商品。

一、先前准备

1.导入必备工具包

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
from wordcloud import WordCloud, STOPWORDS# 设置要显示的行数和列数
pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 50)plt.rcParams['font.sans-serif'] = ['SimHei']   #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   #用来正常显示负号

2.读取数据

articles = pd.read_csv("articles.csv")
customers = pd.read_csv("customers.csv")
transactions = pd.read_csv("transactions_train.csv")

二、Articles数据

这个表格包含了所有H&M的商品,包括产品类型、颜色、产品组和其他特征的详细信息。

商品数据描述:

article_id:每个商品的唯一标识符。
product_code、prod_name:每个产品及其名称的唯一标识符(不同)。
product_type、product_type_name:product_code及其名称的产品组。
graphical_appearance_no、graphical_appearance_name:图形及其名称的组别。
colour_group_code、colour_group_name:颜色及其名称的组别。
perceived_colour_value_id、perceived_colour_value_name、perceived_colour_master_id、perceived_colour_master_name:附加的颜色信息。
department_no、department_name:每个部门及其名称的唯一标识符。
index_code、index_name:每个指标及其名称的唯一标识符。
index_group_no、index_group_name:一组指标及其名称。
section_no、section_name:每个部分及其名称的唯一标识符。
garment_group_no、garment_group_name:每个服装及其名称的唯一标识符。
detail_desc:详细描述。描述是关于H&M商品的数据集。

1.打印查看前5行数据

articles.head()

在这里插入图片描述

2.查看部分字段频次统计

cols = ['index_name','index_group_name']
fig, axs = plt.subplots(1, len(cols), figsize=(10, 4), sharex=True, sharey=True)
fig.suptitle('Articles 部分字段频次统计', size=20)
for idx,col in enumerate(cols):axs[idx].hist(articles[col],orientation="horizontal",color='orange')axs[idx].set_xlabel(f'Count by {col}')axs[idx].set_ylabel(col)
# 调整布局以防止重叠
fig.tight_layout(rect=[0, 0.03, 1, 0.95])

在这里插入图片描述

3.制作云图

stopwords = set(STOPWORDS)def show_wordcloud(data, title = None):wordcloud = WordCloud(background_color='white',stopwords=stopwords,max_words=200,max_font_size=40, scale=5,random_state=1).generate(str(data))fig = plt.figure(1, figsize=(10,10))plt.axis('off')if title: fig.suptitle(title, fontsize=14)fig.subplots_adjust(top=2.3)plt.imshow(wordcloud)plt.show()show_wordcloud(articles["detail_desc"], "Wordcloud from detailed description of articles")

在这里插入图片描述

三、Customers数据

customer_id:每位客户的唯一标识符
FN:1 或 缺失
Active:1 或 缺失
club_member_status:会员俱乐部状态
fashion_news_frequency:H&M 可以向客户发送新闻的频率
age:当前年龄
postal_code:客户的邮政编码

1.打印前5行数据

customers.head()

在这里插入图片描述

2.查看客户年龄分布图

fig, ax = plt.subplots(figsize=(10,5))
ax.hist(customers['age'],color='orange',bins=70)
ax.set_xlabel('Distribution of the customers age')
plt.show()

在这里插入图片描述

3.去重查看会员俱乐部状态

customers['club_member_status'].unique()

在这里插入图片描述

4.打印查看该列数据

customers['club_member_status']

在这里插入图片描述

5.查看会员俱乐部状态数量,绘制条形图

fig, ax = plt.subplots(figsize=(10,5))
ax.hist(customers['club_member_status'].dropna(),color='orange')
ax.set_xlabel('Distribution of club member status')
plt.show()

在这里插入图片描述

6.查看H&M 可以向客户发送新闻的频率,绘制条形图

fig, ax = plt.subplots(figsize=(10,5))
ax.hist(customers['fashion_news_frequency'].dropna(),color='orange')
ax.set_xlabel('Distribution of fashion_news_frequency')
plt.show()

在这里插入图片描述

四、Transactions 数据

t_dat:日期
customer_id:每位客户的唯一标识符(在客户表中)
article_id:每个商品的唯一标识符(在商品表中)
price:购买价格
sales_channel_id:销售渠道的标识符(1 或 2)

1.打印查看前5行数据

transactions.head()

在这里插入图片描述

2.查看销售渠道1、销售渠道2、销售全渠道数据

# 数据准备
data1 = np.log(transactions.loc[transactions["sales_channel_id"] == 1].price.value_counts())
data2 = np.log(transactions.loc[transactions["sales_channel_id"] == 2].price.value_counts())
data3 = np.log(transactions.price.value_counts())# 创建分面图
fig, axs = plt.subplots(3, 1, figsize=(14, 14))  # 3个子图# 子图1:销售渠道1
axs[0].hist(data1, bins=30, alpha=0.5,color='blue')
axs[0].set_title('Sales channel 1')# 子图2:销售渠道2
axs[1].hist(data2, bins=30, alpha=0.5,color='green')
axs[1].set_title('Sales channel 2')# 子图3:所有销售渠道
axs[2].hist(data3, bins=30, alpha=0.5,color='red')
axs[2].set_title('All Sales channels')# 调整子图布局
plt.tight_layout()
plt.show()

在这里插入图片描述

3.articles 数据与 transactions 数据做拼接,其一字段做时间类型转化

articles_for_merge = articles[['article_id', 'prod_name', 'product_type_name', 'product_group_name', 'index_name']]articles_for_merge = transactions[['customer_id', 'article_id', 'price', 't_dat']].merge(articles_for_merge, on='article_id', how='left')articles_for_merge['t_dat'] = pd.to_datetime(articles_for_merge['t_dat'])

4.部分字段按月求价格均值走势

product_list = ['Shoes', 'Garment Full body', 'Bags', 'Garment Lower body', 'Underwear/nightwear']
colors = ['cadetblue', 'orange', 'mediumspringgreen', 'tomato', 'lightseagreen']
k = 0
f, ax = plt.subplots(3, 2, figsize=(20, 15))
for i in range(3):for j in range(2):try:product = product_list[k]articles_for_merge_product = articles_for_merge[articles_for_merge.product_group_name == product_list[k]]series_mean = articles_for_merge_product[['t_dat', 'price']].groupby(pd.Grouper(key="t_dat", freq='M')).mean().fillna(0)series_std = articles_for_merge_product[['t_dat', 'price']].groupby(pd.Grouper(key="t_dat", freq='M')).std().fillna(0)ax[i, j].plot(series_mean, linewidth=4, color=colors[k])ax[i, j].fill_between(series_mean.index, (series_mean.values-2*series_std.values).ravel(), (series_mean.values+2*series_std.values).ravel(), color=colors[k], alpha=.1)ax[i, j].set_title(f'Mean {product_list[k]} price in time')ax[i, j].set_xlabel('month')ax[i, j].set_xlabel(f'{product_list[k]}')k += 1except IndexError:ax[i, j].set_visible(False)
plt.show()

在这里插入图片描述

五、Images 数据

查看特定图片

article_list = ['0200761022','0200182001','0204892029','0203595048','0203027047']
fig, ax = plt.subplots(1, len(article_list), figsize=(20,10))for i, article_id in enumerate(article_list):img = mpimg.imread(f'images/020/{article_id}.jpg')ax[i].imshow(img)ax[i].set_xlabel(f"{article_id}.jpg")ax[i].set_xticks([], [])ax[i].set_yticks([], [])ax[i].grid(False)
plt.show()

在这里插入图片描述


代码参考:深度之眼
数据来源于Kaggle比赛:H&M Personalized Fashion Recommendations

这篇关于Matplotlib实战_HM数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572573

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个