geemap学习笔记041:Landsat Collection2系列数据去云算法总结

本文主要是介绍geemap学习笔记041:Landsat Collection2系列数据去云算法总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

去云算法是进行数据处理中所要进行一步重要操作,Sentinal-2数据中已经提供了去云算法,但是Landsat Collection2系列数据中并没有提供去云算法,下面就以Landsat 8 Collection2为例进行介绍。

1 导入库并显示地图

import ee
import geemapee.Initialize()
Map = geemap.Map()
Map

2 Landsat 8 Collection2去云

Map = geemap.Map()# Landsat-8 Collection2 去云算法
def rmL8CloudNew(image):#根据'QA_PIXEL'波段,如果设置了云位(3)并且云阴影位(4)较高,则认为它是坏像素。cloudShadowBitMask = (1 << 4)cloudsBitMask = (1 << 3)qa = image.select('QA_PIXEL')mask = qa.bitwiseAnd(cloudShadowBitMask).eq(0) \.And(qa.bitwiseAnd(cloudsBitMask).eq(0))return image.updateMask(mask) \.copyProperties(image) \.copyProperties(image, ["system:time_start"])# 应用缩放因子
def apply_scale_factors(image):optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)return image.addBands(optical_bands, None, True).addBands(thermal_bands, None, True)centroid = ee.Geometry.Point([-122.4439, 37.7538]) #创建一个点坐标collection = (ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') #Landsat 8数据.filterDate('2021-08-01', '2021-09-01') #时间.filterBounds(centroid) #筛选经过点的数据.filter(ee.Filter.gt('CLOUD_COVER', 20)) #获取一幅云量较多的数据.map(rmL8CloudNew)  #进行map去云.map(apply_scale_factors) #应用缩放因子
) image = collection.first() #选择第一景数据vis = {'bands': ['SR_B4', 'SR_B3', 'SR_B2'],'min': 0.0,'max': 0.3,
}#设置可视化参数Map.centerObject(image, 8) #设置中心
Map.addLayer(image, vis, 'Landsat-8')
Map

未进行去云之前
image.png

去云之后的结果,其结果基本就是将云像素给去掉。
image.png

后记

大家如果有问题需要交流或者有项目需要合作,可以加Q Q :504156006详聊,加好友请留言“CSDN”,谢谢。

这篇关于geemap学习笔记041:Landsat Collection2系列数据去云算法总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572482

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下