基础强化之范型

2024-01-05 07:32
文章标签 基础 强化 范型

本文主要是介绍基础强化之范型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我相信很多人跟我一样还未学习过范型的概念就开始使用范型的实例,最典型的就是集合框架。为了进一步深入了解范型,这一次通过几个简单的例子来说明范型的注意事项。

一.没有范型的世界

所有的java类都派生自java.lang.Object ,这意味着所有的java对象都可以转换成Object,听起来似乎很美妙,但事实并非如此。举个例子,假设现在需要一伙人去排队,要求只有学生可以参与进来,但是如果对于这个队伍没有条件限定的话,那就意味着我们不想要的一些群体也会进入大军之中,这不利于管理。再如下面一段没有使用范型的代码:

List string=new ArrayList();

string.add("我是第一个元素");

string.add("我是第二个元素");

当要从中获取一个成员时,得到的却是java.lang.Object的一个实例,那么如果我们要使用String类型的对象还要进行强转型,这无疑增加了代码的冗杂度。不过幸好,我们有了范型。

二. 范型类型简介

像方法一样,范型类型也可以接受参数,声明范型类型要使用尖括号将类型变量列表括起来。例如声明一个List对象:

List<E> mylist;

为了将范型类型实例化,要在声明它的时候传递相同的参数列表,例如,为了创建一个使用StringArrayList,要将String放在一对尖括号中进行传递:

              List<String> string=new ArrayList<String>();

       不过,java7版本之后,可以在参数化类的构造器中显式的传入参数,上面一段代码可以改为如下的表达方式:

List<String> string=new ArrayList< >();

毫无疑问范型类型也可以指定Object类型,但是范型类型却不可以是java.lang.Throwable的直接或间接子类,因为它在运行时抛出异常,因此无法查看在编译时会抛出什么异常。

下面一段代码就对使用了范型与未使用范型的List进行了比较:

 

import java.util.ArrayList;
import java.util.List;public class GenericListTest {public static void main(String args[]){//没有使用范型的队列List stringList=new ArrayList();stringList.add("元素1");stringList.add("元素2");//需要强转型String s1=(String)stringList.get(0);System.out.println(s1);//使用范型的队列List<String> list=new ArrayList<String>();list.add("元素3");list.add("元素4");//不需要强转型String s2=list.get(0);System.out.println(s2);}
}

提示:使用范型类型时,是在编译时进行类型检查的

这里值得关注的地方在于,范型类型本身也是一个类型,它还可以用作类型变量。

如下的一段代码演示:

 

import java.util.ArrayList;
import java.util.List;public class ListOfList {public static void main(String args[]){List<String> list=new ArrayList<>();list.add("我是list中的对象");//list中的元素System.out.println(list.get(0));//创建封装了list的List对象List<List<String>> listOflist=new ArrayList<>();listOflist.add(list);//获取list当中的元素String s=listOflist.get(0).get(0);System.out.println(s);}
}

 

 

范型类型可以接受不止一个类型变量,那就是我们非常熟悉的Map集合,相信大家也已经相当熟悉了吧

三.   使用“?”通配符

前面所提到的,如果声明一个List<aType>,那么List将使用aType的实例,并且可以保存以下任意一种类型:

1.       aType的一个实例

2.      aType的子类的一个实例,如果aType是类的话

3.       实现aType的类的一个实例,如果aType是接口的话

但是,注意范型类型本身也是一个java类型,如果你不理解的话,下面这段代码将会让你更加了解这句话的含义:

 

import java.util.ArrayList;
import java.util.List;public class AllowedTypeTest {public static void main(String args[]){List<String> myList=new ArrayList<String>();doIt(myList);}private static void doIt(List<Object> l){}
}

 编译产生了错误,按理说,StringObject的一个子类,但是进行了范型类型封装之后List<String>就不再是List<Object>的一个实例了。

为了解决这个问题,我们就要用到通配符“?”,如下:

 

import java.util.ArrayList;
import java.util.List;public class WildCardTest {private static void doIt(List<?> l){for(Object element:l){System.out.print(element);}}public static void main(String args[]){//字符型ListList<String> stringList=new ArrayList<String>();stringList.add("Hello");stringList.add("World");doIt(stringList);System.out.println();//整型ListList<Integer> intList=new ArrayList<Integer>();intList.add(100);intList.add(200);doIt(intList);}
}

 代码中doIt方法里面的List<?>表示的是任意类型的一个List,但要注意的是,在声明或者创建一个范型类型时使用通配符是不合法的,如:

List<?> list=new ArrayList<?>();

编译会出错。

四. 在方法中使用有界通配符

通过上面的描述,你已经知道了可以使用“?”通配符来解决类型匹配的问题,但是我们在实际中碰到的问题并非这么简单。如果我们想定义一个Number实现子类的List,虽然我们可以用通配符来解决List<Integer>List<Double>类型不匹配的问题,但是无疑的,我们还可以放入很多我们并不需要的实例如List<String>,这样程序的类型安全性根本就没有保障了,那么我们就必须需要一种规则来保证我们所定义的List实例是属于Number的实现子类的,在这里我们就要用到有界通配符。

如下演示:

 

import java.util.ArrayList;
import java.util.List;public class BoundedWildcardTest {public static void main(String args[]){List<Integer> intList=new ArrayList<>();intList.add(3);intList.add(30);System.out.println(getAverage(intList));List<Double> doubleList=new ArrayList<>();doubleList.add(3.0);doubleList.add(30.0);System.out.println(getAverage(doubleList));}private static double getAverage(List<? extends Number> list){double total=0.0;for(Number number:list){total+=number.doubleValue();}return total/list.size();}} 

五.编写范型类型

编写范型类型与其他类型并无太大差异,只是在类中的某处声明需要用到的类型变量列表。下面就是范型类的一个简单示例:

 

public class MyGeneric<E> {E a;public MyGeneric(E a){this.a=a;}public E get(){return a;}public void set(E b){this.a=b;}
}

范型为我们的编码过程做出了巨大的贡献,提供了更加严格的类型检查,并且在取得元素时无需再进行类型转换,真乃编码之一大利器也。

这篇关于基础强化之范型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572114

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)