OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice

2024-01-05 07:28

本文主要是介绍OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Updates on Function Calling were a major highlight at OpenAI DevDay.

In another world,原来的function call都不再正常工作了,必须全部重写。

function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。

干嘛要整个tool出来取代function呢?原因有很多,不再赘述。作为程序员,我们真正关心的是:怎么改?

简单来说,就是整合chatgpt的能力和你个人的能力通过这个tools。怎么做呢?

第一步,定义你的function,最高指示是啥?

import json
from openai import OpenAI
client = OpenAI()# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):"""Get the current weather in a given location"""if "beijing" in location.lower():return json.dumps({"location": location, "temperature": "10", "unit": "celsius"})elif "tokyo" in location.lower():return json.dumps({"location": location, "temperature": "22", "unit": "celsius"})elif "shanghai" in location.lower():return json.dumps({"location": location, "temperature": "21", "unit": "celsius"})elif "san francisco" in location.lower():return json.dumps({"location": location, "temperature": "72", "unit": "fahrenheit"})else:return json.dumps({"location": location, "temperature": "22.22", "unit": "celsius"})

第二步,调用chatgpt模型

让chatgpt干活儿。问问chatgpt啥情况

def run_conversation():# Step 1: send the conversation and available functions to the modelmessages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, Beijing and Paris?"}]tools = [{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather in a given location","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g. San Francisco, CA",},"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},},"required": ["location"],},},}]response = client.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,tools = tools,tool_choice="auto",  # auto is default, but we'll be explicit)response_message = response.choices[0].messagetool_calls = response_message.tool_calls

tool_choice参数让chatgpt模型自行决断是否需要function介入。
response是返回的object,message里包含一个tool_calls array.

tool_calls array The tool calls generated by the model, such as function calls.
id string The ID of the tool call.
type string The type of the tool. Currently, only function is supported.
function object:  The function that the model called.name: string The name of the function to call.arguments: string The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.

第三步,chatgpt判断如果需要function介入,传回一个json对象。

    # Step 2: check if the model wanted to call a functionif tool_calls:# Step 3: call the function# Note: the JSON response may not always be valid; be sure to handle errorsavailable_functions = {"get_current_weather": get_current_weather,}  # only one function in this example, but you can have multiplemessages.append(response_message)  # extend conversation with assistant's reply# Step 4: send the info for each function call and function response to the modelfor tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(location=function_args.get("location"),unit=function_args.get("unit"),)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,})  # extend conversation with function responsesecond_response = openai.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,)  # get a new response from the model where it can see the function responsereturn second_response
print(run_conversation())    

我们把这个传回的json,叠加在message里面,再调用chatgpt模型。得出结果:

ChatCompletion(id='chatcmpl-8ciuEU38jFKJcjEbQH66ejGNnp0kO', 
choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(
content="Currently, the weather in San Francisco, California is 72°F (22°C) with a slight breeze. In Tokyo, Japan, the temperature is 22°C with partly cloudy skies. In Beijing, China, it's 10°C with overcast conditions. And in Paris, France, the temperature is 22.22°C with clear skies.", 
role='assistant', function_call=None, tool_calls=None))], 
created=1704239774, model='gpt-3.5-turbo-1106', object='chat.completion', system_fingerprint='fp_772e8125bb', usage=CompletionUsage(completion_tokens=71, prompt_tokens=229, total_tokens=300))

tool和tool_choice,取代了过去的function和function calling。
在这里插入图片描述

这篇关于OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572103

相关文章

Agent开发核心技术解析以及现代Agent架构设计

《Agent开发核心技术解析以及现代Agent架构设计》在人工智能领域,Agent并非一个全新的概念,但在大模型时代,它被赋予了全新的生命力,简单来说,Agent是一个能够自主感知环境、理解任务、制定... 目录一、回归本源:到底什么是Agent?二、核心链路拆解:Agent的"大脑"与"四肢"1. 规划模

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同