OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice

2024-01-05 07:28

本文主要是介绍OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Updates on Function Calling were a major highlight at OpenAI DevDay.

In another world,原来的function call都不再正常工作了,必须全部重写。

function和function call全部由tool和tool_choice取代。2023年11月之前关于function call的代码都准备翘翘。

干嘛要整个tool出来取代function呢?原因有很多,不再赘述。作为程序员,我们真正关心的是:怎么改?

简单来说,就是整合chatgpt的能力和你个人的能力通过这个tools。怎么做呢?

第一步,定义你的function,最高指示是啥?

import json
from openai import OpenAI
client = OpenAI()# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
def get_current_weather(location, unit="fahrenheit"):"""Get the current weather in a given location"""if "beijing" in location.lower():return json.dumps({"location": location, "temperature": "10", "unit": "celsius"})elif "tokyo" in location.lower():return json.dumps({"location": location, "temperature": "22", "unit": "celsius"})elif "shanghai" in location.lower():return json.dumps({"location": location, "temperature": "21", "unit": "celsius"})elif "san francisco" in location.lower():return json.dumps({"location": location, "temperature": "72", "unit": "fahrenheit"})else:return json.dumps({"location": location, "temperature": "22.22", "unit": "celsius"})

第二步,调用chatgpt模型

让chatgpt干活儿。问问chatgpt啥情况

def run_conversation():# Step 1: send the conversation and available functions to the modelmessages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, Beijing and Paris?"}]tools = [{"type": "function","function": {"name": "get_current_weather","description": "Get the current weather in a given location","parameters": {"type": "object","properties": {"location": {"type": "string","description": "The city and state, e.g. San Francisco, CA",},"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},},"required": ["location"],},},}]response = client.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,tools = tools,tool_choice="auto",  # auto is default, but we'll be explicit)response_message = response.choices[0].messagetool_calls = response_message.tool_calls

tool_choice参数让chatgpt模型自行决断是否需要function介入。
response是返回的object,message里包含一个tool_calls array.

tool_calls array The tool calls generated by the model, such as function calls.
id string The ID of the tool call.
type string The type of the tool. Currently, only function is supported.
function object:  The function that the model called.name: string The name of the function to call.arguments: string The arguments to call the function with, as generated by the model in JSON format. Note that the model does not always generate valid JSON, and may hallucinate parameters not defined by your function schema. Validate the arguments in your code before calling your function.

第三步,chatgpt判断如果需要function介入,传回一个json对象。

    # Step 2: check if the model wanted to call a functionif tool_calls:# Step 3: call the function# Note: the JSON response may not always be valid; be sure to handle errorsavailable_functions = {"get_current_weather": get_current_weather,}  # only one function in this example, but you can have multiplemessages.append(response_message)  # extend conversation with assistant's reply# Step 4: send the info for each function call and function response to the modelfor tool_call in tool_calls:function_name = tool_call.function.namefunction_to_call = available_functions[function_name]function_args = json.loads(tool_call.function.arguments)function_response = function_to_call(location=function_args.get("location"),unit=function_args.get("unit"),)messages.append({"tool_call_id": tool_call.id,"role": "tool","name": function_name,"content": function_response,})  # extend conversation with function responsesecond_response = openai.chat.completions.create(model="gpt-3.5-turbo-1106",messages=messages,)  # get a new response from the model where it can see the function responsereturn second_response
print(run_conversation())    

我们把这个传回的json,叠加在message里面,再调用chatgpt模型。得出结果:

ChatCompletion(id='chatcmpl-8ciuEU38jFKJcjEbQH66ejGNnp0kO', 
choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(
content="Currently, the weather in San Francisco, California is 72°F (22°C) with a slight breeze. In Tokyo, Japan, the temperature is 22°C with partly cloudy skies. In Beijing, China, it's 10°C with overcast conditions. And in Paris, France, the temperature is 22.22°C with clear skies.", 
role='assistant', function_call=None, tool_calls=None))], 
created=1704239774, model='gpt-3.5-turbo-1106', object='chat.completion', system_fingerprint='fp_772e8125bb', usage=CompletionUsage(completion_tokens=71, prompt_tokens=229, total_tokens=300))

tool和tool_choice,取代了过去的function和function calling。
在这里插入图片描述

这篇关于OpenAI ChatGPT-4开发笔记2024-03:Chat之Function Calling/Function/Tool/Tool_Choice的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572103

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像