(三) POJ1050,动态规划必做题目,经典程度五颗星。这个题目的前身就是:求最大子序列和。 先来看最大子序列和。有一串数,有正有负,如2,-1,5,4,-9,7,0,3,-5。求:这

本文主要是介绍(三) POJ1050,动态规划必做题目,经典程度五颗星。这个题目的前身就是:求最大子序列和。 先来看最大子序列和。有一串数,有正有负,如2,-1,5,4,-9,7,0,3,-5。求:这,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

(三) POJ1050,动态规划必做题目,经典程度五颗星。这个题目的前身就是:求最大子序列和。

      先来看最大子序列和。有一串数,有正有负,如2,-1,5,4,-9,7,0,3,-5。求:这一串数中,和最大的一段。比如说,从第一个数2开始,发现下一个为-1,加下-1后和显然会变小。再往后看,第三个数是5,所以上一个-1还是要选的,这样才能加上5。哎,不看了,这样求最大和还不得累死。嘿嘿,这时DP就派上用场了。

 

设这串数为X1 X2 X3 … Xn, 用dp(i,j)表示从Xi…Xj的最大子序列和。

按照DP的思路,想办法减小问题的规模。有n个数,怎样能减少到n-1数?想办法把最后一个数Xn去掉,问题规模就能减少到n-1。

通过观察可以发现:X1…Xn的最大子序列可以分为两类:以Xn结尾、不以Xn结尾。不以Xn结尾的最大子序列,其实就是X1…Xn-1的最大子序列,发现这点很重要。

这样就有:dp( i, j ) = Max( dp( i, j-1 ), Last( j ) ).其中Last( j )表示以Xj结尾的最大子序列的和。

功夫不负有心人,终于把问题规模减少了。但是,一波未平一波又起,新的问题又出现了。Last( j )如何求?即,求以Xj结尾的最大子序列的和。再用DP求解。

Last( j )和Last( j-1 )之间的关系比较简单。Last(j )的值里面必然会包括Xj的值,到底有没有Last( j-1 )也很简单,主要取决于Last( j-1 )是正还是负。

这样就有:Last( j ) = Max( Xj,  Last( j-1) + Xj );

 状态转换方程:

dp( i, j ) = Max( dp( i, j-1 ), Last( j ) )其中:dp(i,j)表示从Xi…Xj的最大子序列和

Last( j ) = Max( Xj, Last( j-1 ) + Xj ); 其中:Last( j )表示以Xj结尾的最大子序列的和

 

       现在,回到POJ1050。想想能不能利用上面的结果?求最大子矩阵,那么只要确定了子矩阵有几行、几列即可。这样,可以枚举子矩阵的行数和列数。

比如,当子矩阵只要一行时,那么只关心它的列从哪开始到那结束就行。哦,这其实就是一个最大子序列和的问题。这一行就是这一串数,求和最大的一段。那么当子矩阵有两行时,怎么办?如何把两行变为一行?一个聪明的想法就是:把这两行按照对应的列加起来。

好了问题已经漂亮的解决了:在原矩阵中任意画出一部分,然后按照对应的列加起来,问题就转变为一个最大子序列和的问题



//下面的是 一维数组 ,最大长序列 的和 最大子串和:

import java.util.Arrays;/*
其实就是最大子段和问题在二维空间上的推广。先说一下一维的情况吧:设有数组a0,a1…an,找除其中连续的子段,使它们的和达到最大。假如对于子段:9 2 -16 2  temp[i]表示以ai结尾的子段中的最大子段和。在已知temp[i]的情况下,求temp [i+1]的方法是:如果temp[i]>0 temp [i+1]= temp[i]+ai(继续在前一个子段上加上ai),否则temp[i+1]=ai(不加上前面的子段),也就是说 状态转移方程:temp[i] = (temp[i-1]>0?temp[i-1]:0)+buf[i];对于刚才的例子 temp: 9 11 -5 2,然后取temp[]中最大的就是一维序列的最大子段。求一维最大子段和的函数:
import java.util.Arrays;/*其实就是最大子段和问题在二维空间上的推广。先说一下一维的情况吧:设有数组a0,a1…an,找除其中连续的子段,使它们的和达到最大。假如对于子段:9 2 -16 2  temp[i]表示以ai结尾的子段中的最大子段和。在已知temp[i]的情况下,求temp [i+1]的方法是:如果temp[i]>0 temp [i+1]= temp[i]+ai(继续在前一个子段上加上ai),否则temp[i+1]=ai(不加上前面的子段),也就是说 状态转移方程:temp[i] = (temp[i-1]>0?temp[i-1]:0)+buf[i];对于刚才的例子 temp: 9 11 -5 2,然后取temp[]中最大的就是一维序列的最大子段。求一维最大子段和的函数:*/
public class TheMaxSubString
{public static void main(String[] args){// int [] buff ={1,-1,3,4,5,6,7,8,-1,128};int[] buff ={ 4, 9, -17, 7 };System.out.println(Arrays.toString(buff));System.out.println(DpLineMaxSum(buff, 4));int[][] buff2 ={{ 0, -2, -7, 0 },{ 9, 2, -6, 2 },{ -4, 1, -4, 7 },{ -1, 8, 0, -2 } };System.out.println(DpMatrixMaxSum(buff2, 4, 4));}// 最大矩阵和:二维数组public static int DpMatrixMaxSum(int buff[][], int row, int col){int maxSum = 0;int virtualLine[] = new int[col];// 从哪一行开始往下求和for (int i = 0; i < row; i++){// 以i行为基准,需要循环多少次,求for (int temp = 0; temp < row - i; temp++){int j = i + temp;// 以i为基准啊进行往下求和for (int column = 0; column < col; column++){int sum = 0;// 按照列进行相加,for (int k = i; k <= j; k++){sum += buff[k][column];}virtualLine[column] = sum;}int value = DpLineMaxSum(virtualLine, col);maxSum = (maxSum < value) ? value : maxSum;}}return maxSum;}// 最大子串和:一维数组public static int DpLineMaxSum(int buff[], int n){int e = 0;int max = 0;int[] temp = Arrays.copyOf(buff, n);for (int i = 1; i < n; i++){temp[i] = (temp[i - 1] > 0 ? temp[i - 1] : 0) + buff[i];if (max < temp[i]){max = temp[i];e = i;}}System.out.println("line-->" + e);return max;}
}



这篇关于(三) POJ1050,动态规划必做题目,经典程度五颗星。这个题目的前身就是:求最大子序列和。 先来看最大子序列和。有一串数,有正有负,如2,-1,5,4,-9,7,0,3,-5。求:这的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/571489

相关文章

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

C++从序列容器中删除元素的四种方法

《C++从序列容器中删除元素的四种方法》删除元素的方法在序列容器和关联容器之间是非常不同的,在序列容器中,vector和string是最常用的,但这里也会介绍deque和list以供全面了解,尽管在一... 目录一、简介二、移除给定位置的元素三、移除与某个值相等的元素3.1、序列容器vector、deque

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...