本文主要是介绍偏微分方程的类型及求解(二)(备份草稿),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
续《偏微分方程的类型及求解》(一)。
四. 附录
4.1 傅立叶变换的性质
变换形式: (1)傅立叶变换 \hat f(\omega)=\int_{-\infty}{+\infty}e{-j\omega x}f(x)dx ,傅立叶逆变换 f(x)=\frac{1}{2 \pi}\int_{-\infty}{+\infty}e{jx\omega}\hat f(\omega)d \omega ; (2)傅立叶余弦变换 \hat f(\omega)=\int_{0}^{+\infty}cos \omega xf(x)dx ,傅立叶逆变换 f(x)=\frac{2}{\pi}\int_{0}^{+\infty}cosx \omega\hat f(\omega)d \omega ; (3)傅立叶正弦变换 \hat f(\omega)=\int_{0}^{+\infty}sin \omega xf(x)dx ,傅立叶逆变换 f(x)=\frac{2}{\pi}\int_{0}^{+\infty}sinx \omega\hat f(\omega)d \omega 。
性质
共11个:线性定理、卷积定理、乘积定理、导函数的傅立叶变换、象函数的导数定理、延迟定理、位移定理、积分定理、 \delta 函数的傅立叶变换、相似定理、函数傅立叶正逆变换定理。
要能够写出来,以及要会证明!证明在教材P112-114页,套路一般就两个:要么变量名替换直接正推,要么傅立叶逆变换替换进行逆推。(这些性质实际上给出了特殊形式的原函数的象函数,在以后计算过程中遇到类似的,要能够马上反映过来并套用公式)
例题
1.教材P116 5.1-1,证明: (1) F{-1}(\exp(-y|\omega|))=\frac{1}{\pi}\frac{y}{x2+y^2},y>0 ;(2) F(e^{j \omega_0x}f(x))=\hat f(\omega-\omega_0) ;(3) F(f(at))=\frac{1}{|a|}\hat f(\frac{\omega}{a}) 。
2.教材P116 5.1-2(2),求函数的傅立叶变换: f(x)=\exp(-\pi x^2) 。
答案: e{\frac{-\omega2}{4 \pi}} 。
3.教材P116 5.1-5,求函数 f(x) \begin{equation} =\left{ \begin{aligned} &1-x^2,|x|<1\ &0,|x|\geq 1 \end{aligned} \right. \end{equation} 的傅立叶变换。
答案: \frac{4}{\omega^3}(sin\omega-\omega cos \omega)
4.2 拉普拉斯变换的性质
变换形式: 拉普拉斯变换 \tilde{f(s)}=\int_0{+\infty}e{-sx}f(x)dx ,拉普拉斯逆变换用展开定理 f(x)=\sum_{k=1}n\operatorname{Res}[e{xs}f(s),s_k]\quad(x\geq 0) ,其中 \operatorname{Res}[e^{xs}f(s),s_k] 表示 e^{xs}f(s) 对应于奇点 s_k 的留数,若 z_0 为 f(z) 的m阶极点,则 \operatorname{Res}f(z_0)=\lim_{z \to z_0}\frac{1}{(m-1)!}{\frac{d{m-1}}{dz{m-1}}[(z-z_0^m)f(z)]} (很机械,直接套用公式即可)
性质
共10个:线性定理、卷积定理、导函数的拉普拉斯变换、象函数的导数定理、延迟定理、位移
这篇关于偏微分方程的类型及求解(二)(备份草稿)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!