本文主要是介绍230.Kth Smallest Element in a BST,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
中序遍历BST
BST具有如下性质:
左子树中所有元素的值均小于根节点的值
右子树中所有元素的值均大于根节点的值
因此采用中序遍历(左 -> 根 -> 右)即可以递增顺序访问BST中的节点,从而得到第k小的元素,时间复杂度O(k)
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/
class Solution {
public:int kthSmallest(TreeNode* root, int k) {stack<TreeNode *> myStack;int count = 1;while(root || !myStack.empty()){while(root){myStack.push(root);root = root->left;}if(!myStack.empty()){TreeNode *tmp = myStack.top();myStack.pop();if(count == k){return tmp->val;}root = tmp->right;++count;}}return INT_MAX;}
};
进一步思考:
如果BST节点TreeNode的属性可以扩展,则再添加一个属性leftCnt,记录左子树的节点个数
上述算法时间复杂度为O(BST的高度)
这篇关于230.Kth Smallest Element in a BST的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!