椭球面系列---大地坐标和笛卡尔坐标的相互转换

2024-01-04 16:36

本文主要是介绍椭球面系列---大地坐标和笛卡尔坐标的相互转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

椭球体下,尤其是地球的旋转椭球体下,大地坐标和笛卡尔坐标的相互转换是最基础的算法了。本章给出两种坐标系下相互转换的原理及相应的转换公式,供参考。

大地坐标

大地坐标(Geodetic coordinate)是大地测量中以参考椭球面为基准面的坐标,点P的位置用大地经度λ、大地纬度φ和大地高H表示。

大地坐标多应用于大地测量学,测绘学等。具体为:

  • 大地经度
    大地经度是通过该点的大地子午面与起始大地子午面(通过格林尼治天文台的子午面)之间的夹角。规定以起始子午面起算,向东由0°至180°称为东经;向西由0°至180°称为西经。
  • 大地纬度
    大地纬度是P点在椭球面的投影点的法线与赤道面的夹角,规定由赤道面起算,由赤道面向北从0°至90°称为北纬;向南从0°到90°称为南纬。P点位于椭球面的投影点的法线方向上。
  • 大地高度
    大地高是地面点沿法线到参考椭球面的距离。

注意大地纬度与地心纬度的区别!大地坐标的示意图如下。
大地坐标

笛卡尔坐标

点P的笛卡尔坐标即为参考椭球体中心直角坐标系下的坐标,使用 ( x , y , z ) (x,y,z) (x,y,z)表示。

大地坐标示意图

大地坐标 ( λ , φ , h ) (\lambda,\varphi,h) (λ,φ,h)转换为笛卡尔坐标 ( x , y , z ) (x,y,z) (x,y,z)

大地坐标向笛卡尔坐标的转换为直接转换,不需要迭代。

见上图,已知 P P P点的大地坐标 ( λ , φ , h ) (\lambda,\varphi,h) (λ,φ,h) P ′ P' P P P P点在椭球面上的投影点,即 P ′ P P'P PP P ′ P' P点的法线方向(定义为 n \textbf{n} n)。

法线向量 n \textbf{n} n很容易由大地经度和大地纬度计算得到:
n = [ c o s ( φ ) c o s ( λ ) c o s ( φ ) s i n ( λ ) s i n ( φ ) ] \begin{equation} \textbf{n}=\left [ \begin{matrix} cos(\varphi)cos(\lambda)\\cos(\varphi)sin(\lambda)\\sin(\varphi)\\\end{matrix} \right ] \end{equation} n= cos(φ)cos(λ)cos(φ)sin(λ)sin(φ)
在椭球面系列—基本性质一文中我们知道,若已知椭球面上点 P ′ P' P的法线向量 n \textbf{n} n,则可求解 k k k:
k 2 = n T C − 1 n \begin{equation} k^2=\textbf{n}^T\textbf{C}^{-1}\textbf{n} \end{equation} k2=nTC1n
从而可以直接计算得到椭球面上点 P ′ P' P的笛卡尔坐标 ( x ′ , y ′ , z ′ ) T (x',y',z')^T (x,y,z)T
P ′ = ( x ′ , y ′ , z ′ ) T = 1 k C − 1 n \begin{equation} P'=(x',y',z')^T=\frac1k\textbf{C}^{-1}\textbf{n} \end{equation} P=(x,y,z)T=k1C1n
得到点 P ′ P' P后,则由法向量 n \textbf{n} n和高度 h h h可直接得到点 P P P的笛卡尔坐标 ( x , y , z ) T (x,y,z)^T (x,y,z)T
P = [ x y z ] = [ x ′ y ′ z ′ ] + n ∣ n ∣ h \begin{equation} P= \left [ \begin{matrix}x\\y\\z\\\end{matrix} \right ] =\left [ \begin{matrix}x'\\y'\\z'\\\end{matrix} \right ] +\frac {\textbf{n}}{|\textbf{n}|}h \end{equation} P= xyz = xyz +nnh

笛卡尔坐标 ( x , y , z ) (x,y,z) (x,y,z)转换为大地坐标 ( λ , φ , h ) (\lambda,\varphi,h) (λ,φ,h)

笛卡尔坐标向大地坐标的转换为隐式转换,需要迭代求解。

仍然见上图, P ′ P' P点的法线方向(定义为 n \textbf{n} n)由其笛卡尔坐标 ( x ′ , y ′ , z ′ ) T (x',y',z')^T (x,y,z)T表示(这里我们不知道大地坐标,所以不能像式(1)方式来表示)则有:
n = [ x ′ / a 2 y ′ / b 2 z ′ / c 2 ] \begin{equation} \textbf{n}=\left [ \begin{matrix}x'/a^2\\y'/b^2\\z'/c^2\\\end{matrix} \right ] \end{equation} n= x/a2y/b2z/c2
很明显,此法线 n \textbf{n} n为梯度向量的 1 / 2 1/2 1/2

P ′ P' P点和 P P P点的关系可表示为(与式(4)形式相同):
[ x y z ] = [ x ′ y ′ z ′ ] + t [ x ′ / a 2 y ′ / b 2 z ′ / c 2 ] \begin{equation} \left [ \begin{matrix}x\\y\\z\\\end{matrix} \right ] = \left [ \begin{matrix}x'\\y'\\z'\\\end{matrix} \right ] + t\left [ \begin{matrix}x'/a^2\\y'/b^2\\z'/c^2\\\end{matrix} \right ] \end{equation} xyz = xyz +t x/a2y/b2z/c2
上式中, t t t为法向量的系数,选取合适的 t t t,则可使得上式成立。

将上式改变为:
[ x ′ y ′ z ′ ] = [ x / ( 1 + t / a 2 ) y / ( 1 + t / b 2 ) z / ( 1 + t / c 2 ) ] \begin{equation} \left [ \begin{matrix}x'\\y'\\z'\\\end{matrix} \right ] =\left [ \begin{matrix}x/(1+t/a^2)\\y/(1+t/b^2)\\z/(1+t/c^2)\\\end{matrix} \right ] \end{equation} xyz = x/(1+t/a2)y/(1+t/b2)z/(1+t/c2)
由于 P ′ P' P为椭球面上的点,因此满足椭球面方程:
x ′ 2 a 2 + y ′ 2 b 2 + z ′ 2 c 2 = 1 \begin{equation} \frac{x'^2}{a^2} + \frac{y'^2}{b^2} + \frac{z'^2}{c^2} = 1 \end{equation} a2x′2+b2y′2+c2z′2=1
将式(8)带入上式,并定义函数 f ( t ) f(t) f(t):
f ( t ) = x 2 a 2 ( 1 + t / a 2 ) 2 + y 2 b 2 ( 1 + t / b 2 ) 2 + z 2 c 2 ( 1 + t / c 2 ) 2 − 1 \begin{equation} f(t)=\frac{x^2}{a^2(1+t/a^2)^2} + \frac{y^2}{b^2(1+t/b^2)^2} + \frac{z^2}{c^2(1+t/c^2)^2} - 1 \end{equation} f(t)=a2(1+t/a2)2x2+b2(1+t/b2)2y2+c2(1+t/c2)2z21
由于 P P P点坐标 ( x , y , z ) (x,y,z) (x,y,z)已知,则变为求解方程 f ( t ) = 0 f(t)=0 f(t)=0的根。

函数 f ( t ) f(t) f(t)为一元函数,且为隐式函数,因此求根一般采用牛顿迭代法(使用一阶导数 f ′ ( t ) f'(t) f(t)),即:
f ( t ) = f ( t 0 ) + f ′ ( t 0 ) . Δ t = 0 \begin{equation} f(t)=f(t_0)+f'(t_0).\Delta t=0 \end{equation} f(t)=f(t0)+f(t0)t=0
迭代求解时,每一步 t t t可由前一次数值给出:
t n + 1 = t n − f ( t n ) / f ′ ( t n ) \begin{equation} t_{n+1}=t_n-f(t_n)/f'(t_n) \end{equation} tn+1=tnf(tn)/f(tn)
由式(10)可得一阶导数 f ′ ( t ) f'(t) f(t):
f ′ ( t ) = − 2 x 2 a 4 ( 1 + t / a 2 ) 3 − 2 y 2 b 4 ( 1 + t / b 2 ) 3 − 2 z 2 c 4 ( 1 + t / c 2 ) 3 \begin{equation} f'(t)=\frac{-2x^2}{a^4(1+t/a^2)^3} - \frac{2y^2}{b^4(1+t/b^2)^3} - \frac{2z^2}{c^4(1+t/c^2)^3} \end{equation} f(t)=a4(1+t/a2)32x2b4(1+t/b2)32y2c4(1+t/c2)32z2

下面给出迭代参数 t t t的初值 t 0 t_0 t0的求解。

由上图可知, O P OP OP与椭球面的交点 P 0 P_0 P0 P ′ P' P点很近,因此首先求解 P 0 P_0 P0点的坐标 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)
[ x 0 y 0 z 0 ] = 1 d . [ x y z ] \begin{equation} \left [ \begin{matrix}x_0\\y_0\\z_0\\\end{matrix} \right ] = \frac 1d .\left [ \begin{matrix}x\\y\\z\\\end{matrix} \right ] \end{equation} x0y0z0 =d1. xyz
上式中 d d d可由 P P P点的坐标 ( x , y , z ) (x,y,z) (x,y,z)求得:
x 2 a 2 + y 2 b 2 + z 2 c 2 = d 2 \begin{equation} \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = d^2 \end{equation} a2x2+b2y2+c2z2=d2

迭代开始时,将 P 0 P_0 P0当作 P ′ P' P即可。则根据上图几何关系和式(6),有:
h = ( 1 − 1 / d ) ∣ P ∣ = t ∣ n ∣ h=(1-1/d) |\textbf P|=t|\textbf{n}| h=(11/d)P=tn
因此 t 0 t_0 t0为:
t = ( 1 − 1 / d ) ∣ P ∣ / ∣ n ∣ \begin{equation} t=(1-1/d) |\textbf P|/|\textbf{n}| \end{equation} t=(11/d)P∣/∣n
上式中:
∣ P ∣ = x 2 + y 2 + z 2 |\textbf P|=\sqrt{x^2+y^2+z^2} P=x2+y2+z2
∣ n ∣ = x 0 2 / a 4 + y 0 2 / b 4 + z 0 2 / c 4 |\textbf{n}|=\sqrt{x_0^2/a^4+y_0^2/b^4+z_0^2/c^4} n=x02/a4+y02/b4+z02/c4
使用牛顿迭代法求得 t t t后,则带入式(8)可求得椭球面投影点于 P ′ P' P的坐标 ( x ′ , y ′ , z ′ ) T (x',y',z')^T (x,y,z)T

有了 P ′ P' P点坐标,则椭球面法向量 n \textbf{n} n可由式(5)给出。

最终,大地坐标为:
{ λ = t a n − 1 ( n y , n x ) φ = s i n − 1 ( n z / ∣ n ∣ ) h = t / ∣ n ∣ \begin{equation} \begin{cases} \lambda=tan^{-1}(n_y,n_x) \\ \varphi=sin^{-1}(n_z/|\textbf{n}|) \\ h=t/|\textbf{n}| \end{cases} \end{equation} λ=tan1(ny,nx)φ=sin1(nz/∣n)h=t/∣n
注意,上式中的 ∣ n ∣ |\textbf{n}| n x ′ 2 / a 4 + y ′ 2 / b 4 + z ′ 2 / c 4 \sqrt{x'^2/a^4+y'^2/b^4+z'^2/c^4} x′2/a4+y′2/b4+z′2/c4

参考:
[1]: 椭球面系列—基本性质
[2]: [学习内容:求一个点到椭球面的距离(下)

这篇关于椭球面系列---大地坐标和笛卡尔坐标的相互转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569934

相关文章

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

JAVA中整型数组、字符串数组、整型数和字符串 的创建与转换的方法

《JAVA中整型数组、字符串数组、整型数和字符串的创建与转换的方法》本文介绍了Java中字符串、字符数组和整型数组的创建方法,以及它们之间的转换方法,还详细讲解了字符串中的一些常用方法,如index... 目录一、字符串、字符数组和整型数组的创建1、字符串的创建方法1.1 通过引用字符数组来创建字符串1.2

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

基于C#实现将图片转换为PDF文档

《基于C#实现将图片转换为PDF文档》将图片(JPG、PNG)转换为PDF文件可以帮助我们更好地保存和分享图片,所以本文将介绍如何使用C#将JPG/PNG图片转换为PDF文档,需要的可以参考下... 目录介绍C# 将单张图片转换为PDF文档C# 将多张图片转换到一个PDF文档介绍将图片(JPG、PNG)转

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训