算法导论复习——CHP22 分支限界法

2024-01-04 12:36

本文主要是介绍算法导论复习——CHP22 分支限界法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LIFO和FIFO分枝-限界法        

        采用宽度优先策略,在生成当前E-结点全部儿子之后再生成其它活结点的儿子,且用限界函数帮助避免生成不包含答案结点子树的状态空间的检索方法。两种基本设计策略: FIFO检索:活结点表采用队列;LIFO检索:活结点表采用栈。

        如采用FIFO分支-限界法检索4-皇后问题的状态空间树:

LC-检索(Least Cost,A*算法)

        LIFO和FIFO分枝-限界法存在的问题

        对下一个E-结点的选择规则过于死板。对于有可能快速检索到一个答案结点的结点没有给出任何优先权,如结点30。

        解决:做某种排序,让可以导致答案结点的活结点排在前面 。

        如何排序? 寻找一种“有智力”的排序函数C(·),来选取下一个E 结点,加快到达一答案结点的检索速度。

        如何衡量结点的优先等级?

        对于任一结点,用该结点导致答案结点的成本(代价) 来衡量该结点的优先级——成本越小越优先

        对任一结点X,可以用两种标准来衡量结点的代价:

        1)在生成一个答案结点之前,子树 X 需要生成的结点数。

        2)在子树 X 中离 X 最近的那个答案结点到 X 的路径长度。

        C(x)

         “有智力”的排序函数,依据成本排序,优先选择成本最小的活结点作为下一个E结点进行扩展。 C(·)又称为“结点成本函数” n 结点成本函数C(X)的取值:

        1)如果X是答案结点,则C(X)是由状态空间树的根结点到X 的成本(即所用的代价,可以是级数、计算复杂度等)。

        2) 如果X不是答案结点且子树X不包含任何答案结点,则 C(X)=∞

        3) 如果X不是答案结点但子树X包含答案结点,则C(X)应等于子树X中具有最小成本的答案结点的成本。

        \widehat{c}(x)

        计算结点X的代价通常要检索子树X才能确定,因此 计算C(X)的工作量和复杂度与解原始问题是相同的。 n 计算结点成本的精确值是不现实的——相当于求解 原始问题。怎么办? n 结点成本的估计函数\widehat{c}(x)包括两部分:h(X)和\widehat{g}(x)

        \widehat{g}(x)是由X到达一个答案结点所需成本的估计函数

                性质:单纯使用选择E结点会导致算法偏向纵深检查。

        故引进h(X)改进成本估计函数:h(x)=根结点到结点X的成本——已发生成本。

                f(·)是一个非降函数。 非零的f(·)可以减少算法作偏向于纵深检查的可能性, 它强使算法优先检索更靠近答案结点但又离根更近的结点。 

        LC-检索:选择\widehat{c}(x)值最小的活结点作为下一个E-结点的状态空间树检索方法。

                特例:

                BFS: 依据级数来生成结点,

                D-Search:令f (h(X)) =0;所以当Y是X的一个儿子时, 总有

        LC分支-限界检索:带有限界函数的LC-检索

        LEAST(E):在活结点表中找一个具有最小成本估计值的活结点,从活结点表中删除这个结点,并将此结点放在变量E中返回。

        ADD(X):将新的活结点X加到活结点表中。

        活结点表:以优先队列存放 

不同估算函数对于结果的影响

        1、当估算的距离等于实际距离时,一路下去,肯定就是最优的解,而且基本不用扩展其它的点。

        2、如果估算距离小于实际距离时,则到最后一定能找到一条最短路径,但是有可能会经过很多无效的点。(过于乐观,以h(X)为主)

        3、如果估算距离大于实际距离时,有可能就很快找到一条通往目的地的路径,但是却不一定是最优的解。(过于悲观,以g(X)为主)

        成本函数在分支-限界算法中的应用

        假定每个答案结点X有一个与其相联系的c(X),且找成本最小的答案结点。

        1)最小成本的下界为X的成本估计函数。当时, \widehat{c}(x)给出了由结点X求解的最小成本的下界,作为启发性函数,减 少选取E结点的盲目性。

        2)最小成本的上界 。最小成本的上界 定义U为最小成本解的成本上界,则对具有的所有活结点可以被杀死,从而可以进一步使算法加速,减少求解的盲目性。

        最小成本上界U的求取:

        1)初始值:利用启发性方法赋初值,或置为∞

        2)每找到一个新的答案结点后修正U,U取当前最小成本值。 注:只要U的初始值不小于最小成本答案结点的成本,利用U就不会杀死可以到达最小成本答案结点的活结点。

利用分枝-限界算法求解最优化问题

        可行解:类似于n-元组的构造,把可行解可能的构造过程用 “状态空间树”表示出来。

        最优解:把对最优解的检索表示成对状态空间树答案结点的 检索。

        成本函数:每个结点赋予一个成本函数c(X) ,并使得代表最优解的答案结点的c(X)是所有结点成本的最小值 。

这篇关于算法导论复习——CHP22 分支限界法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/569360

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/