python统计分析——直方图(sns.histplot)

2024-01-04 08:36

本文主要是介绍python统计分析——直方图(sns.histplot),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用seanborn.histplot()函数绘制直方图

from matplotlib.pyplot as plt
import seaborn as snsdata_set=np.array([2,3,3,4,4,4,4,5,5,6])
plt.hist(fish_data)

(1)data=None,  表示数据源。
(2)x=None, 表示直方图的分布垂直与x轴。单位序列型数据时,默认垂直于x轴。
(3)y=None, 表示直方图的分布垂直于y轴。

(4)hue=None, 用于区分数据系列。
df=pd.DataFrame(data={'type':['A','A','A','A','A','A','A','A','A','A','B','B','B','B','B','B','B','B','B','B'],'value':[2,3,3,4,4,4,4,5,5,6,5,6,6,7,7,7,7,8,8,9]
})
sns.histplot(data=df,x='value',hue='type')

(5)weights=None, 表示对数据设置权重,要求权重序列的长度与作图的数据点的长度一致。
df=pd.DataFrame(data={'type':['A','A','A','A','A','A','A','A','A','A','B','B','B','B','B','B','B','B','B','B'],'value':[2,3,3,4,4,4,4,5,5,6,5,6,6,7,7,7,7,8,8,9],'weight':[2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1]
})
sns.histplot(data=df,x='value',weights='weight')
图中A的权重是B权重的2倍。

(6)stat='count', 默认为count,表示频数统计。还有frequency、probability、percent、density。frequency表示频数除以极差(全距);probability表示用小数点表示的频率;percent表示用百分数表示的频率;density表示概率密度,为frequency之和归一处理后的数据。

(7)bins='auto', 表示数据桶的数目,即直方图呈现出的数据组数。当bins为一个整数时,表示需要分组的数目;当bins为一个数据序列时,表示用于分组的临界值。举例说明:当bins=[1,2,3,4]时,用于分组的区间为:[1,2)、[2,3)、[3,4];当bins为文本时,表示作图时的分组策略,可用选项具体有:'auto', 'fd', 'doane','scott', 'stone', 'rice', 'sturges', 'sqrt'。下图为“rice”分组策略为例,其余的可以自行尝试。

(8)binwidth=None, 用于设置数据桶的组距,下图设置组距为0.8,即binwidth=0.8。

(9)binrange=None, 用于设置绘制直方图的数据源的上下限,低于下限或高于上限的数据将不参与绘制。下图设置的组距是3-5。

(10)discrete=None, 用于告诉程序数据是否是离散型数据,如果设置为True,则按照离散型数据绘制直方图。下图中注意看横坐标的变化。

(11)cumulative=False, 如果设置为True表示对数据进行累加。

(12)common_bins=True, 当存在两组或多组数据时,用于明确分组依据是否按照统一标准进行。默认为统一标准。当设置为False时,即各自按各自分组依据进行,作图如下:(13)common_norm=True, 当分组数据作图,stat设置为‘percent’或‘density’时,如果设置为True,表示按整体进行汇总转换,当设置为False时,表示按各组自己的数据汇总转换。下图分别为True和False的设置,注意看纵坐标轴的变换。(14)multiple='layer', 用于设置分组数据的展现形式。有layer、dodge、stack、fill四种设置。(15)element='bars', 用于设置直方图的表现形式。有bars、step和poly三种设置。(16)fill=True, 用于设置条形图是否有填充,默认为True,下图为设置为False的展示。(17)shrink=1, 用于设置条形图的宽度相对于组距的宽度,默认为1,即二者相等。下图为设置为0.8的效果。(18)kde=False, 用于设置是否显示核密度曲线(概率密度函数是一个已知概率分布的函数,用于描述随机变量的概率分布。而核密度函数是一种基于数据样本的估计方法,用于估计数据的概率密度,并生成一个平滑的密度曲线。因此,概率密度函数是一种理论上的概念,而核密度函数是一种实际上用于估计概率密度的方法。)(19)log_scale=None, 由于设置是否对数据进行对数转换。

这篇关于python统计分析——直方图(sns.histplot)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568747

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合