本文主要是介绍心电图的模型调参,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
建模调参
首先先确立模型,确立完模型以后进行交叉验证查看模型的评分,随后对模型的参数进行调整,直到找到使模型评分高的参数。下面先对模型进行评分。
导入相关库
import pandas as pd
import numpy as np
from sklearn.metrics import f1_scoreimport os
import seaborn as sns
import matplotlib.pyplot as pltimport warnings
warnings.filterwarnings("ignore")
读取数据
def reduce_mem_usage(df):start_mem = df.memory_usage().sum() / 1024**2 print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))for col in df.columns:col_type = df[col].dtypeif col_type != object:c_min = df[col].min()c_max = df[col].max()if str(col_type)[:3] == 'int':if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:df[col] = df[col].astype(np.int8)elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:df[col] = df[col].astype(np.int16)elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:df[col] = df[col].astype(np.int32)elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:df[col] = df[col].astype(np.int64) else:if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:df[col] = df[col].astype(np.float16)elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:df[col] = df[col].astype(np.float32)else:df[col] = df[col].astype(np.float64)else:df[col] = df[col].astype('category')end_mem = df.memory_usage().sum() / 1024**2 print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))return df
# 读取数据
data = pd.read_csv('train.csv')
# 简单预处理
data_list = []
for items in data.values:data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])data = pd.DataFrame(np.array(data_list))
data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label']data = reduce_mem_usage(data)
进行简单的建模
# 建模之前的预操作
from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
X_train = data.drop(['id','label'], axis=1)
y_train = data['label']# 5折交叉验证
folds = 5
seed = 2021
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)
因为树模型中没有f1-score评价指标,所以需要自定义评价指标,在模型迭代中返回验证集f1-score变化情况。
def f1_score_vali(preds, data_vali):labels = data_vali.get_label()preds = np.argmax(preds.reshape(4, -1), axis=0)score_vali = f1_score(y_true=labels, y_pred=preds, average='macro')return 'f1_score', score_vali, True
使用Lightgbm进行建模
"""对训练集数据进行划分,分成训练集和验证集,并进行相应的操作"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)params = {"learning_rate": 0.1,"boosting": 'gbdt', "lambda_l2": 0.1,"max_depth": -1,"num_leaves": 128,"bagging_fraction": 0.8,"feature_fraction": 0.8,"metric": None,"objective": "multiclass","num_class": 4,"nthread": 10,"verbose": -1,
}"""使用训练集数据进行模型训练"""
model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=50, early_stopping_rounds=200,feval=f1_score_vali)
对验证集进行验证
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
preds = np.argmax(val_pre_lgb, axis=1)
score = f1_score(y_true=y_val, y_pred=preds, average='macro')
print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score))
发现未调参前lightgbm单模型在验证集上的f1为:0.9596756568138634
使用5折交叉验证进行模型性能评估
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):print('************************************ {} ************************************'.format(str(i+1)))X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]train_matrix = lgb.Dataset(X_train_split, label=y_train_split)valid_matrix = lgb.Dataset(X_val, label=y_val)params = {"learning_rate": 0.1,"boosting": 'gbdt', "lambda_l2": 0.1,"max_depth": -1,"num_leaves": 128,"bagging_fraction": 0.8,"feature_fraction": 0.8,"metric": None,"objective": "multiclass","num_class": 4,"nthread": 10,"verbose": -1,}model = lgb.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200,feval=f1_score_vali)val_pred = model.predict(X_val, num_iteration=model.best_iteration)val_pred = np.argmax(val_pred, axis=1)cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))print(cv_scores)print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
可以发现模型的评分已经升高,但是预测的结果远远达不到我们预想的要求,所以我们采取对模型的参数进行调整。
剩余调参方法请见——>https://blog.csdn.net/sjjsaaaa/article/details/115179796
这篇关于心电图的模型调参的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!