本文主要是介绍UniversalTransformer with Adaptive Computation Time(ACT),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
原论文链接:https://arxiv.org/abs/1807.03819
Main code
import torch
import numpy as npclass PositionTimestepEmbedding(torch.nn.Module):def forward(self, x, t):device = x.devicesequence_length = x.size(1)d_model = x.size(2)position_embedding = np.array([[pos / np.power(10000, 2.0 * (j // 2) / d_model) for j in range(d_model)] for pos in range(sequence_length)])position_embedding[:, 0::2] = np.sin(position_embedding[:, 0::2])position_embedding[:, 1::2] = np.cos(position_embedding[:, 1::2])timestep_embedding = np.array([[t / np.power(10000, 2.0 * (j // 2) / d_model) for j in range(d_model)]])timestep_embedding[:, 0::2] = np.sin(timestep_embedding[:, 0::2])timestep_embedding[:, 1::2] = np.sin(timestep_embedding[:, 1::2])embedding = position_embedding + timestep_embeddingreturn x + torch.tensor(embedding, dtype=torch.float, requires_grad=False, device=device)class MultiHeadAttention(torch.nn.Module):def __init__(self, d_model, num_heads, dropout=0.):super().__init__()self.d_model = d_modelself.num_heads = num_headsself.head_dim = d_model // num_headsassert self.head_dim * num_heads == self.d_model, "d_model must be divisible by num_heads"self.query = torch.nn.Linear(d_model, d_model)self.key = torch.nn.Linear(d_model, d_model)self.value = torch.nn.Linear(d_model, d_model)self.dropout = torch.nn.Dropout(dropout)self.output = torch.nn.Linear(d_model, d_model)self.layer_norm = torch.nn.LayerNorm(d_model)def scaled_dot_product_attention(self, q, k, v, mask=None):scores = torch.matmul(q, k.transpose(-2, -1)) / (self.head_dim ** 0.5)if mask is not None:scores = scores.masked_fill(mask, -np.inf)scores = scores.softmax(dim=-1)scores = self.dropout(scores)return torch.matmul(scores, v), scoresdef forward(self, q, k, v, mask=None):batch_size = q.size(0)residual = qif mask is not None:mask = mask.unsqueeze(1)q = self.query(q).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)k = self.key(k).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)v = self.value(v).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)out, scores = self.scaled_dot_product_attention(q, k, v, mask)out = (out.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.head_dim))out = self.output(out)out += residualreturn self.layer_norm(out)class TransitionFunction(torch.nn.Module):def __init__(self, d_model, dim_transition, dropout=0.):super().__init__()self.linear1 = torch.nn.Linear(d_model, dim_transition)self.relu = torch.nn.ReLU()self.linear2 = torch.nn.Linear(dim_transition, d_model)self.dropout = torch.nn.Dropout(dropout)self.layer_norm = torch.nn.LayerNorm(d_model)def forward(self, x):y = self.linear1(x)y = self.relu(y)y = self.linear2(y)y = self.dropout(y)y = y + xreturn self.layer_norm(y)class EncoderBasicLayer(torch.nn.Module):def __init__(self, d_model, dim_transition, num_heads, dropout=0.):super().__init__()self.self_attention = MultiHeadAttention(d_model, num_heads, dropout)self.transition = TransitionFunction(d_model, dim_transition, dropout)def forward(self, block_inputs, enc_self_attn_mask=None):self_attention_outputs = self.self_attention(block_inputs, block_inputs, block_inputs, enc_self_attn_mask)block_outputs = self.transition(self_attention_outputs)return block_outputsclass DecoderBasicLayer(torch.nn.Module):def __init__(self, d_model, dim_transition, num_heads, dropout=0.):super().__init__()self.self_attention = MultiHeadAttention(d_model, num_heads, dropout)self.attention_enc_dec = MultiHeadAttention(d_model, num_heads, dropout)self.transition = TransitionFunction(d_model, dim_transition, dropout)def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask=None, dec_enc_attn_mask=None):dec_query = self.self_attention(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)block_outputs = self.attention_enc_dec(dec_query, enc_outputs, enc_outputs, dec_enc_attn_mask)block_outputs = self.transition(block_outputs)return block_outputsclass RecurrentEncoderBlock(torch.nn.Module):def __init__(self, num_layers, d_model, dim_transition, num_heads, dropout=0.):super().__init__()self.layers = torch.nn.ModuleList([EncoderBasicLayer(d_model,dim_transition,num_heads,dropout) for _ in range(num_layers)])def forward(self, x, enc_self_attn_mask=None):for l in self.layers:x = l(x, enc_self_attn_mask)return xclass RecurrentDecoderBlock(torch.nn.Module):def __init__(self, num_layers, d_model, dim_transition, num_heads, dropout=0.):super().__init__()self.layers = torch.nn.ModuleList([DecoderBasicLayer(d_model,dim_transition,num_heads,dropout) for _ in range(num_layers)])def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):for l in self.layers:dec_inputs = l(dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)return dec_inputsclass AdaptiveNetwork(torch.nn.Module):def __init__(self, d_model, dim_transition, epsilon, max_hop):super().__init__()self.threshold = 1.0 - epsilonself.max_hop = max_hopself.halting_predict = torch.nn.Sequential(torch.nn.Linear(d_model, dim_transition),torch.nn.ReLU(),torch.nn.Linear(dim_transition, 1),torch.nn.Sigmoid())def forward(self, x, mask, pos_time_embed, recurrent_block, encoder_output=None):device = x.devicehalting_probability = torch.zeros((x.size(0), x.size(1)), device=device)remainders = torch.zeros((x.size(0), x.size(1)), device=device)n_updates = torch.zeros((x.size(0), x.size(1)), device=device)previous = torch.zeros_like(x, device=device)step = 0while (((halting_probability < self.threshold) & (n_updates < self.max_hop)).byte().any()):x = x + pos_time_embed(x, step)p = self.halting_predict(x).squeeze(-1)still_running = (halting_probability < 1.0).float()new_halted = (halting_probability + p * still_running > self.threshold).float() * still_runningstill_running = (halting_probability + p * still_running <= self.threshold).float() * still_runninghalting_probability = halting_probability + p * still_runningremainders = remainders + new_halted * (1 - halting_probability)halting_probability = halting_probability + new_halted * remaindersn_updates = n_updates + still_running + new_haltedupdate_weights = p * still_running + new_halted * remaindersif encoder_output is not None:x = recurrent_block(x, encoder_output, mask[0], mask[1])else:x = recurrent_block(x, mask)previous = ((x * update_weights.unsqueeze(-1)) + (previous * (1 - update_weights.unsqueeze(-1))))step += 1return previousclass Encoder(torch.nn.Module):def __init__(self, epsilon, max_hop, num_layers, d_model, dim_transition, num_heads, dropout=0.):super().__init__()assert 0 < epsilon < 1, "0 < epsilon < 1 !!!"self.pos_time_embedding = PositionTimestepEmbedding()self.recurrent_block = RecurrentEncoderBlock(num_layers,d_model,dim_transition,num_heads,dropout)self.adaptive_network = AdaptiveNetwork(d_model, dim_transition, epsilon, max_hop)def forward(self, x, enc_self_attn_mask=None):return self.adaptive_network(x, enc_self_attn_mask, self.pos_time_embedding, self.recurrent_block)class Decoder(torch.nn.Module):def __init__(self, epsilon, max_hop, num_layers, d_model, dim_transition, num_heads, dropout=0.):super().__init__()assert 0 < epsilon < 1, "0 < epsilon < 1 !!!"self.pos_time_embedding = PositionTimestepEmbedding()self.recurrent_block = RecurrentDecoderBlock(num_layers,d_model,dim_transition,num_heads,dropout)self.adaptive_network = AdaptiveNetwork(d_model, dim_transition, epsilon, max_hop)def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):return self.adaptive_network(dec_inputs, (dec_self_attn_mask, dec_enc_attn_mask),self.pos_time_embedding, self.recurrent_block, enc_outputs)class AdaptiveComputationTimeUniversalTransformer(torch.nn.Module):def __init__(self, d_model, dim_transition, num_heads, enc_attn_layers, dec_attn_layers, epsilon, max_hop, dropout=0.):super().__init__()self.encoder = Encoder(epsilon, max_hop, enc_attn_layers, d_model, dim_transition, num_heads, dropout)self.decoder = Decoder(epsilon, max_hop, dec_attn_layers, d_model, dim_transition, num_heads, dropout)def forward(self, src, tgt, enc_self_attn_mask=None, dec_self_attn_mask=None, dec_enc_attn_mask=None):enc_outputs = self.encoder(src, enc_self_attn_mask)return self.decoder(tgt, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
Mask
# from https://zhuanlan.zhihu.com/p/403433120
def get_attn_subsequence_mask(seq): # seq: [batch_size, tgt_len]attn_shape = [seq.size(0), seq.size(1), seq.size(1)]subsequence_mask = np.triu(np.ones(attn_shape), k=1) # 生成上三角矩阵,[batch_size, tgt_len, tgt_len]subsequence_mask = torch.from_numpy(subsequence_mask).bool() # [batch_size, tgt_len, tgt_len]return subsequence_maskdef get_attn_pad_mask(seq_q, seq_k): # seq_q: [batch_size, seq_len] ,seq_k: [batch_size, seq_len]batch_size, len_q = seq_q.size()batch_size, len_k = seq_k.size()pad_attn_mask = seq_k.data.eq(0).unsqueeze(1) # 判断 输入那些含有P(=0),用1标记 ,[batch_size, 1, len_k]return pad_attn_mask.expand(batch_size, len_q, len_k)
这篇关于UniversalTransformer with Adaptive Computation Time(ACT)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!