【模板】矩阵求逆

2024-01-03 13:58
文章标签 模板 矩阵 求逆

本文主要是介绍【模板】矩阵求逆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

方法就是通常的那种方法,就是在原矩阵旁边放一个单位矩阵,对两个矩阵一起高斯消元,当原矩阵被消成单位矩阵时右边的单位矩阵就是它的逆,在高斯消元过程中如果不能继续下去就无解

步骤就是先找到当前要操作的行,然后给这一行进行变换,乘以 1 f i , i \frac{1}{f_{i,i}} fi,i1
然后对其余行,给操作行乘以 − f j , i -f_{j,i} fj,i加到这些行上去,这样就能保证 f i , i = 1 f_{i,i}=1 fi,i=1 f j , i = 0 f_{j,i}=0 fj,i=0

好像还有神仙做法不用另拿一个矩阵,直接在原矩阵上做就行,但原理好像并不清楚,就没写

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define LL long long
#define N 405
using namespace std;
const int mod=1e9+7;template<class T>inline void rd(T &x){ x=0; short f=1; char c=getchar(); while(c<'0' || c>'9') f=c=='-'?-1:1,c=getchar(); while(c<='9' && c>='0') x=x*10+c-'0',c=getchar(); x*=f; 
}int n,m;
int f[N][N<<1],r,ans;inline int qpow(int x,int k){int ret=1;while(k){if(k&1) ret=1LL*ret*x%mod;x=1LL*x*x%mod; k>>=1;} return ret;
}inline void Gauss(){for(int i=1;i<=n;i++){for(int j=i;j<=n;j++)if(f[j][i]){if(j!=i) for(int k=1;k<=m;k++) swap(f[i][k],f[j][k]);break;}if(!f[i][i]){puts("No Solution");exit(0);}r=qpow(f[i][i],mod-2);for(int j=i;j<=m;j++) f[i][j]=1LL*f[i][j]*r%mod;for(int j=1;j<=n;j++)if(j!=i){r=f[j][i];for(int k=i;k<=m;k++)f[j][k]=(f[j][k]-1LL*r*f[i][k]%mod+mod)%mod;}}for(int i=1;i<=n;i++){for(int j=n+1;j<=m;j++) printf("%d ",f[i][j]);puts("");} return;
}int main(){rd(n); m=n<<1;for(int i=1;i<=n;i++){for(int j=1;j<=n;j++) rd(f[i][j]);f[i][n+i]=1;}Gauss();return 0;
}

这篇关于【模板】矩阵求逆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565915

相关文章

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

poj 2104 and hdu 2665 划分树模板入门题

题意: 给一个数组n(1e5)个数,给一个范围(fr, to, k),求这个范围中第k大的数。 解析: 划分树入门。 bing神的模板。 坑爹的地方是把-l 看成了-1........ 一直re。 代码: poj 2104: #include <iostream>#include <cstdio>#include <cstdlib>#include <al

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

最大流、 最小费用最大流终极版模板

最大流  const int inf = 1000000000 ;const int maxn = 20000 , maxm = 500000 ;struct Edge{int v , f ,next ;Edge(){}Edge(int _v , int _f , int _next):v(_v) ,f(_f),next(_next){}};int sourse , mee

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

C++语法知识点合集:11.模板

文章目录 一、非类型模板参数1.非类型模板参数的基本形式2.指针作为非类型模板参数3.引用作为非类型模板参数4.非类型模板参数的限制和陷阱:5.几个问题 二、模板的特化1.概念2.函数模板特化3.类模板特化(1)全特化(2)偏特化(3)类模板特化应用示例 三、模板分离编译1.概念2.模板的分离编译 模版总结 一、非类型模板参数 模板参数分类类型形参与非类型形参 非类型模板