使用networkx及matplotlib库实现社会网络分析及可视化

2024-01-03 12:20

本文主要是介绍使用networkx及matplotlib库实现社会网络分析及可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号: HR和Python

4年人力资源从业经验,情报学硕士,主要内容涵盖python、数据分析和人力资源相关内容

networkx是python的一个第三方包,可以方便地调用各种图算法的计算。通过调用python画图包matplotlib能实现图的可视化。如果需要详细了解networks库可以参照官方文档:https://networkx.github.io/documentation/networkx-1.9/

1.安装库

安装networkx

  1. pip3 install networks

  1. The following command must be run outside of the IPython shell:

  2. $ pip install networks

  3. The Python package manager (pip) can only be used from outside of IPython.

  4. Please reissue the `pip` command in a separate terminal or command prompt.

  5. See the Python documentation for more information on how to install packages:

  6. https://docs.python.org/3/installing/

2.使用

创建一个没有节点也没有边的空图

在使用networks进行创建网络关系及网络分析之前,我们首先要先创建空图,在networks库中,提供三种类型的图:简单无向图graph,有向图digraph,可重复边的multi-graph。语法如下:

代码功能
G=nx.Graph()创建空的简单图
G=nx.DiGraph()创建空的简单有向图
G=nx.MultiGraph()创建空的多图
G=nx.MultiDiGraph()创建空的有向多图

比如我们创建名为G的无向图,具体代码如下:

  1. import networkx as nx

  2. G = nx.Graph()

创建节点(add_note)

这里的点可以是任意可区分的对象(hashable),比如数字,字符串,对象等。

用一个对象多为key来唯一区别一个点

  1. G.add_node('firstnode')

用一个列表来批量加入点

  1. G.add_nodes_from([1,2,3])

用一个图对象作为加入点

嵌入到其他图中这里D作为一个点的key,或者把一个图的所有点赋予另一个图

  • G.add_node(D)

  • G.add_nodes_from(D)这里返回D的所有点,赋予G

比如我们创建节点名为1和"python"的节点 具体代码如下:

  1. G.add_node(1)

  2. G.add_node("python")

  1. G.nodes()

  1. NodeView((1, 'python'))

删除节点(remove_node)

删除节点和创建节点用法几乎相同,比如我们删除节点'python',或者从列表[1,2,3]中删除节点

  1. G.remove_node("python")

  2. G.remove_nodes_from([1,2,3])

创建边

功能代码
节点1,2之间创建一条边G.add_edge(1,2)
用包含元组的列表批量创建边G.add_edges_from([(1,2),(2,3)]
将一个图的边赋予另一个图G.add_edges_from(H)
  1. G.add_edge(1,2)

  2. G.add_edges_from([(1,2),(2,3)])

删除边(remove_edge)

删除节点和创建节点用法几乎相同,比如我们删除节点1,2之间的边,或者批量删除节点(1,2),节点(3,4)之间的边

  1. G.remove_edge(1,2)

  2. G.remove_edges_from([(1,2),(2,3)])

访问

我们可以访问图中的节点和节点之间的边

  • 访问 G.nodes()

  • 访问节点 G.edges()

  1. G.add_edges_from([(1,2),(2,3)])

  2. G.nodes()

  3. G.edges()

  1. EdgeView([(1, 2), (2, 3)])

画网络图

将创建的图进行可视化呈现需要用到matplotlib.pyplot库

  1. import matplotlib.pyplot as plt

  2. nx.draw_networkx(G)

  3. plt.show()

设置节点颜色,大小

  1. plt.figure(figsize=(20,10))

  2. nx.draw_networkx(G,font_size = 12,font_color = "blue",node_size = 1000)

  3. nx.draw_networkx(G)

  4. plt.show()

实战

接下来我们用已经清洗好的数据集绘制《神雕侠侣》人物网络关系图

  1. import matplotlib.pyplot as plt

  2. import networkx as nx

  3. %matplotlib inline

  4. #显示中文

  5. plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']

  6. fi =open("网络图2.txt","r", encoding='gbk')

  7. edges = []

  8. for line in fi.readlines():

  9. edges.append(line.replace('\n', '').replace('\t', ',').split(','))

  10. nodes = ['陆无双','程英','何沅君','陆展元', '李莫愁', '武三通','段智兴','武三娘',

  11. '武敦儒','武修文','黄蓉', '柯镇恶','郭靖', '黄药师','洪七公','梅超风',

  12. '欧阳锋','杨过', '杨康','穆念慈', '陈玄风', '鲁有脚', '丘处机', '赵志敬',

  13. '霍都', '达尔巴','王重阳','孙婆婆', '林朝英','耶律齐','耶律燕','完颜萍',

  14. '金轮法王','陆冠英','朱子柳','傻姑','周伯通','冯默风','潇湘子','尼摩星',

  15. '马光佐','尹克西','刘瑛','公孙绿萼','樊一翁','裘千尺','裘千仞','郭破虏',

  16. '郭襄','独孤求败','人厨子','圣因师太']

  17. g=nx.Graph()

  18. g.add_nodes_from(nodes)

  19. g.add_edges_from(edges)

  20. plt.figure(figsize=(20, 10))

  21. nx.draw_networkx(g, font_size=12, font_color='blue', node_size=1500)

  22. plt.savefig('ba.png')

  23. fi.close()


近期文章

代码不到40行的超燃动态排序图

如何使用Adaboost预测下一次营销活动的效果

Python网络爬虫与文本数据分析

日期数据操作第1期 datetime库

日期数据操作第2期 pandas库

Python语法快速入门

Python爬虫快速入门

文本数据分析文章汇总(2016-至今)

当文本分析遇到乱码(ง'⌣')ง怎么办?

Loughran&McDonald金融文本情感分析库

使用分析师报告中含有的情感信息预测上市公司股价变动

当pandas遇上数据类型问题

如何理解pandas中的transform函数

计算社会经济学

一行pandas代码生成哑变量

Python最被低估的库,用好了效率提升10倍!

公众号后台回复关键词“20191127”,即可获得课件资源,请在如果觉得有用,欢迎转发支持~如果您想了解如何对小说人物关系数据进行清洗,请关注我们下期内容

这篇关于使用networkx及matplotlib库实现社会网络分析及可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565673

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的