BOSS直聘上算法岗位的薪资分析

2024-01-02 13:36

本文主要是介绍BOSS直聘上算法岗位的薪资分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        

目录

一、数据介绍及预处理

1、数据介绍

2、数据预处理

二、数据分析

1、缺失值统计

2、岗位数量、薪资水平统计

3、企业维度岗位数量

4、top薪资岗位

三、划重点

少走10年弯路


        元旦抽空爬取了一下BOSS直聘上base北京的算法岗位的相关数据,本文简单分析拿给大家做参考,看完才发现算法薪资原来这么高啊、轻松秒掉数据分析。

        在PC端上打开BOSS直聘网页搜索算法,只会显示10页岗位(每页30条),所以我按照工作经验要求对应届生、 1年以内、 1-3年、 3-5年、 5-10年、 10年以上分别爬了10页数据,总共1770条(漏了30条也不是算法岗位,就不补了)。

一、数据介绍及预处理

1、数据介绍

        数据包括职位名称、base地点、薪资水平、经验及学历要求、招聘公司、行业、融资阶段、员工规模等 文末获取数据集

图片

2、数据预处理

(1)数据筛选

        由于BOSS直聘上搜索算法岗位的结果中,包含一些数据开发、AI产品等其他岗位,因此按照岗位名称是否包含算法/机器学习等来做筛选,剩余1411条

图片

(2)数据分割提取

        在job_area中包括市、行政区、乡镇三级地址,tag_list中包含经验要求、学历要求,company_tag_list中包含行业、融资阶段、员工规模,所以结合split方法、正则表达式分别进行数据提取。

图片


import re
def get_industry(string):try:result=re.findall('(.*?)[0-9].*[0-9].*',string)[0]l=['已上市','不需要融资','未融资','天使轮','A轮','B轮','C轮','D轮及以上']for s in l:result=result.replace(s,'')return resultexcept:return Nonedef get_scale(string):try:result=re.findall('([0-9].*[0-9].*)',string)[0]l=['已上市','不需要融资','未融资','天使轮','A轮','B轮','C轮','D轮及以上']for s in l:if s in result:result=result.split(s)[1]return resultexcept:return Nonedef dat_pred(data):df=data[data.job_name.str.contains('算法')|data.job_name.str.contains('机器学习')|data.job_name.str.contains('深度学习')|data.job_name.str.contains('自然语言')|data.job_name.str.contains('NLP')|data.job_name.str.contains('图像识别')].reset_index(drop=True).copy()df['district']=df.job_area.str.split('·').str[1]df['town']=df.job_area.str.split('·').str[2]df['experience']=df.tag_list.str.split('\\n').str[0]df['education']=df.tag_list.str.split('\\n').str[1]df['industry']=df.company_tag_list.apply(get_industry)
#     df['scale']=df.company_tag_list.apply(lambda x:re.findall('([0-9].*[0-9].*)',x)).str[0]df['scale']=df.company_tag_list.apply(get_scale)df['base_salary']=df.salary.str.split('-').str[0]df.base_salary=df.base_salary.astype(float)return dfdf_all_copy=df_all.pipe(dat_pred)
df_all_copy

(3)薪资数据处理

        考虑到薪资待遇下限更贴近实际,因此提取左边界作为base_salary用于分析,此外发现大部分salary单位是k、但是还有部分为元,所以进行标准化处理、统一为k。

图片

二、数据分析

1、缺失值统计

        由于BOSS直聘上的数据格式规范,所以爬取的数据质量尚可,整体缺失率低

图片

2、岗位数量、薪资水平统计

        对地域、学历、经验、员工规模等进行分组统计岗位数量、薪资水平

(1)行政区分组统计

        不出所料,海淀和朝阳的算法岗位数量远超其他地区,在海淀确实有很多互联网大厂的职场,在这个数据集中直接按行政区分组统计base_salary平均水平最高的反而是顺义(同数据分析),而顺义的数据量少、所以结果仅供参考

图片

图片

(2)经验要求分组统计

        从数据结果来看,相对于数据分析岗位而言、企业对应届生的算法岗位招聘量比较可观,当然应届生的面试难度可能更大;算法岗位基本起薪都在20k了,而且随着工作经验增加,算法岗位的薪资待遇增长也很稳定,3年基本就能拿到30k了

图片

图片

(3)学历要求分组统计

        从数据结果来看,企业对学历还是有一定要求的,大多本科起步;随着学历提高,薪资差异虽然没有那么大、但也还是明显的单调关系

图片

图片

3、企业维度岗位数量

图片

4、top薪资岗位

        分别对不同经验要求的算法岗位排序的到最高的top10薪资,可以看到在不同经验要求下最高的一批薪资都是很可观的、尤其是top岗位薪资是超乎想象的高,所以加油吧朋友们,钱途可期啊

图片

图片

图片

图片

三、划重点

少走10年弯路

        关注威信公众号 Python风控模型与数据分析,回复 BOSS直聘算法 获取本篇数据及代码

        还有更多理论、代码分享等你来拿

这篇关于BOSS直聘上算法岗位的薪资分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562598

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意