Rasa初始化聊天机器人的配置

2024-01-02 10:04

本文主要是介绍Rasa初始化聊天机器人的配置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文详细介绍了使用 rasa init 初始化聊天机器人项目的配置,包括 nlu.yml、rules.yml、stories.yml、test_stories.yml、config.yml、credentials.yml、domain.yml、endpoints.yml 等文件。如下所示:

│  config.yml
│  credentials.yml
│  domain.yml
│  endpoints.yml
│  graph.html
│  requirements.txt
│
├─actions
│      actions.py
│      __init__.py
│
├─data
│      nlu.yml
│      rules.yml
│      stories.yml
│
├─models
└─teststest_stories.yml

一.nlu.yml 文件

version: "3.1"nlu:
- intent: greetexamples: |- hey- hello- hi- hello there- good morning- good evening- moin- hey there- let's go- hey dude- goodmorning- goodevening- good afternoon- intent: goodbyeexamples: |- cu- good by- cee you later- good night- bye- goodbye- have a nice day- see you around- bye bye- see you later- intent: affirmexamples: |- yes- y- indeed- of course- that sounds good- correct- intent: denyexamples: |- no- n- never- I don't think so- don't like that- no way- not really- intent: mood_greatexamples: |- perfect- great- amazing- feeling like a king- wonderful- I am feeling very good- I am great- I am amazing- I am going to save the world- super stoked- extremely good- so so perfect- so good- so perfect- intent: mood_unhappyexamples: |- my day was horrible- I am sad- I don't feel very well- I am disappointed- super sad- I'm so sad- sad- very sad- unhappy- not good- not very good- extremly sad- so saad- so sad- intent: bot_challengeexamples: |- are you a bot?- are you a human?- am I talking to a bot?- am I talking to a human?

(1)greet:欢迎语,比如你好等。

(2)goodbye:比如再见等。

(3)affirm:肯定,比如是的等。

(4)deny:否定,比如不等。

(5)mood_great:心情好,比如开心等。

(6)mood_unhappy:心情不好,比如沮丧等。

(7)bot_challenge:不在上述意图当中,就是 bot 无法识别意图。

二.rules.yml

version: "3.1"rules:- rule: Say goodbye anytime the user says goodbyesteps:- intent: goodbye- action: utter_goodbye- rule: Say 'I am a bot' anytime the user challengessteps:- intent: bot_challenge- action: utter_iamabot

  规则就是当识别到这个意图(intent)的时候,就执行相应的动作(action)。如下所示:

responses:utter_goodbye:- text: "Bye"utter_iamabot:- text: "I am a bot, powered by Rasa."

(1)当遇到 goodbye 意图的时候,就要执行 utter_goodbye 这个动作。

(2)当遇到 bot_challenge 意图的时候,就要执行 utter_iamabot 这个动作。

三.stories.yml

version: "3.1"stories:- story: happy pathsteps:- intent: greet- action: utter_greet- intent: mood_great- action: utter_happy- story: sad path 1steps:- intent: greet- action: utter_greet- intent: mood_unhappy- action: utter_cheer_up- action: utter_did_that_help- intent: affirm- action: utter_happy- story: sad path 2steps:- intent: greet- action: utter_greet- intent: mood_unhappy- action: utter_cheer_up- action: utter_did_that_help- intent: deny- action: utter_goodbye

1.这个场景包括 3 条路线

(1)happy path 路线

  • 用户:你好(意图:greet)
  • 机器人:你好(动作:utter_greet)
  • 用户:很开心(mood_great)
  • 机器人:很好,加油(动作:utter_happy)
    (2)sad path 1 路线
  • 用户:你好(意图:greet)
  • 机器人:你好(动作:utter_greet)
  • 用户:心情不好(意图:mood_unhappy)
  • 机器人:要开心起来(动作:utter_cheer_up)
  • 机器人:那对你有帮助吗?(动作:utter_did_that_help)
  • 用户:是的(意图:affirm)
  • 机器人:很好,加油(动作:utter_happy)
    (3)sad path 2 路线
  • 用户:你好(意图:greet)
  • 机器人:你好(动作:utter_greet)
  • 用户:心情不好(意图:mood_unhappy)
  • 机器人:要开心起来(动作:utter_cheer_up)
  • 机器人:那对你有帮助吗?(动作:utter_did_that_help)
  • 用户:没有(意图:deny)
  • 机器人:再见(动作:utter_goodbye)

2.rasa visualize 可视化 Story

  rasa visualize 命令的主要工作是分析 Rasa 项目中的对话故事(stories)文件并生成一个交互式的图形,以可视化对话流程。交互图的节点代表了用户意图和机器人动作,边表示它们之间的转换关系。这种可视化工具有助于直观地理解对话流程,特别是在对话逻辑比较复杂的情况下。以下是该命令的工作原理:

(1)读取 Stories 文件

  首先,rasa visualize 命令会读取项目中的 stories 文件(通常是 data/stories.yml)。这些文件包含了对话故事,定义了用户意图和机器人动作之间的交互流程。

(2)构建交互图

  通过解析 stories 文件,命令会构建一个对话交互图。这个图表示用户和机器人在对话中的交互流程,以及相应的用户意图和机器人动作。

(3)生成可视化HTML文件

  rasa visualize 命令会将构建的对话交互图转换为一个 HTML 文件,其中包含了图形表示以及相应的节点和边。这个 HTML 文件包含了交互式元素,允许用户通过鼠标交互浏览对话流程。

(4)在浏览器中打开HTML文件

  最后,命令会在默认的浏览器中打开生成的 HTML 文件,让用户能够通过图形化界面来查看对话的流程。

四.config.yml 文件

# 配置配方
# https://rasa.com/docs/rasa/model-configuration/
recipe: default.v1# assistant项目唯一标识符
# 此默认值必须替换为部署中的唯一assistant名称
assistant_id: 20231231-104634-violent-plate# Rasa NLU的配置
# https://rasa.com/docs/rasa/nlu/components/
language: enpipeline: null
# # 没有为NLU管道提供配置。以下默认管道用于训练你的模型。
# # 如果想自定义它,请取消注释并调整管道。
# # 有关更多信息,请参见https://rasa.com/docs/rasa/tuning-your-model。
#   - name: WhitespaceTokenizer
#   - name: RegexFeaturizer
#   - name: LexicalSyntacticFeaturizer
#   - name: CountVectorsFeaturizer
#   - name: CountVectorsFeaturizer
#     analyzer: char_wb
#     min_ngram: 1
#     max_ngram: 4
#   - name: DIETClassifier
#     epochs: 100
#     constrain_similarities: true
#   - name: EntitySynonymMapper
#   - name: ResponseSelector
#     epochs: 100
#     constrain_similarities: true
#   - name: FallbackClassifier
#     threshold: 0.3
#     ambiguity_threshold: 0.1# Rasa Core的配置
# https://rasa.com/docs/rasa/core/policies/
policies: null
# # 没有为策略提供配置。以下默认策略用于训练你的模型。
# # 如果想自定义它们,请取消注释并调整策略。
# # 有关更多信息,请参见https://rasa.com/docs/rasa/policies。
#   - name: MemoizationPolicy
#   - name: RulePolicy
#   - name: UnexpecTEDIntentPolicy
#     max_history: 5
#     epochs: 100
#   - name: TEDPolicy
#     max_history: 5
#     epochs: 100
#     constrain_similarities: true

  主要是提供关于 Rasa NUL(管道配置)、Rasa Core(策略配置)、recipe(配方配方)、assistant_id(唯一标识符配置)、language(语言)的配置。需要注意的是,当 pipeline: null 和 policies: null 时,执行默认的管道和策略。

五.domain.yml

version: "3.1"intents:- greet- goodbye- affirm- deny- mood_great- mood_unhappy- bot_challengeresponses:utter_greet:- text: "Hey! How are you?"utter_cheer_up:- text: "Here is something to cheer you up:"image: "https://i.imgur.com/nGF1K8f.jpg"utter_did_that_help:- text: "Did that help you?"utter_happy:- text: "Great, carry on!"utter_goodbye:- text: "Bye"utter_iamabot:- text: "I am a bot, powered by Rasa."session_config:session_expiration_time: 60   # 会话过期时间,单位秒carry_over_slots_to_new_session: true  # 是否将上一个会话的槽位带入到新的会话中

  主要是意图(intent),响应(response)和会话(session)配置。

六.credentials.yml

# 这个文件包含了你的机器人使用的语音和聊天平台的凭证。
# https://rasa.com/docs/rasa/messaging-and-voice-channelsrest:
#  # 你不需要在这里提供任何东西 - 这个频道不需要任何凭证#facebook:
#  verify: "<verify>"
#  secret: "<your secret>"
#  page-access-token: "<your page access token>"#slack:
#  slack_token: "<your slack token>"
#  slack_channel: "<the slack channel>"
#  slack_signing_secret: "<your slack signing secret>"#socketio:
#  user_message_evt: <event name for user message>
#  bot_message_evt: <event name for bot messages>
#  session_persistence: <true/false>socketio:user_message_evt: user_uttered  # 用户消息事件bot_message_evt: bot_uttered    # 机器人消息事件session_persistence: false      # 会话持久化#mattermost:
#  url: "https://<mattermost instance>/api/v4"
#  token: "<bot token>"
#  webhook_url: "<callback URL>"# 这个entry是在你使用Rasa企业版时需要的。这个entry代表了Rasa企业版的“频道”的凭证,即与你的机器人交谈并与访客共享。
rasa:url: "http://localhost:5002/api"

(1)socketio 配置

  • user_message_evt: 用户消息事件。在使用 Socket.IO 通道时,Rasa 将监听该事件来接收来自用户的消息。
  • bot_message_evt: 机器人消息事件。在使用 Socket.IO 通道时,Rasa 将通过该事件向用户发送消息。
  • session_persistence: 会话持久化。设置为 false 表示不保存对话状态,每次连接都是新的对话。

(2)rasa 配置

  • url: http://localhost:5002/api:最早这部分配置是为了在使用 Rasa X 时提供凭证信息。但是现在 Rasa X 已经体制维护了,所以成了现在的 Rasa 企业版。

(3)Facebook、Slack、Mattermost 配置

  每个注释后面的配置项提供了针对特定平台(如 Facebook、Slack、Mattermost)的配置示例。这些示例包括验证令牌、密钥、访问令牌等信息,这些信息是在连接到相应平台时所需的。你应该根据你的实际情况替换这些示例值。如果你没有使用某个平台,可以将相应的部分注释掉或删除。确保只保留你实际使用的平台的配置信息。

七.endpoints.yml 文件

# 这个文件包含了你的机器人可以使用的不同端点。# 服务器从中拉取模型的位置。
# https://rasa.com/docs/rasa/model-storage#fetching-models-from-a-server#models:
#  url: http://my-server.com/models/default_core@latest
#  wait_time_between_pulls:  10   # [optional](default: 100)# 服务器运行自定义操作。
# https://rasa.com/docs/rasa/custom-actionsaction_endpoint:url: "http://localhost:5055/webhook"# Tracker store用于存储对话。默认情况下,对话存储在内存中。
# https://rasa.com/docs/rasa/tracker-stores#tracker_store:
#    type: redis
#    url: <host of the redis instance, e.g. localhost>
#    port: <port of your redis instance, usually 6379>
#    db: <number of your database within redis, e.g. 0>
#    password: <password used for authentication>
#    use_ssl: <whether or not the communication is encrypted, default false>#tracker_store:
#    type: mongod
#    url: <url to your mongo instance, e.g. mongodb://localhost:27017>
#    db: <name of the db within your mongo instance, e.g. rasa>
#    username: <username used for authentication>
#    password: <password used for authentication># Event broker which all conversation events should be streamed to.
# 所有对话事件都应该流式传输到的Event broker。
# https://rasa.com/docs/rasa/event-brokers#event_broker:
#  url: localhost
#  username: username
#  password: password
#  queue: queue

  这个配置文件定义了 Rasa 机器人在不同端点上的配置。确保根据你的需求正确配置这些端点。如果不需要使用远程模型、自定义操作、或者对话存储,你可以注释掉相应的部分。以下是对每个部分的详细解释:

(1)模型服务器端点(models

  • url: 指定了从服务器中拉取模型的位置。可以设置为训练好的模型所在的服务器地址。通常,这个配置项用于从远程服务器获取最新的模型。
  • wait_time_between_pulls: 可选配置,用于设置两次拉取模型之间的等待时间。默认值是100毫秒。

注释掉这个部分的配置意味着使用本地文件系统中的模型,而不是从远程服务器拉取。

(2)自定义操作端点(action_endpoint

  • url: 指定了运行自定义操作的服务器地址。当 Rasa 接收到执行自定义操作的请求时,它会将请求发送到这个地址。这个地址应该指向运行自定义操作的服务器。

(3)对话存储(tracker_store

  • type: 指定了对话存储的类型。可以选择使用 redismongod 作为对话存储后端。注释掉这部分的配置将使用默认的内存存储,对话数据将在内存中保留,服务器重新启动后将丢失。
  • 具体的配置参数(如 urlportdbusernamepassword 等)取决于选择的存储类型。

(4)事件代理(event_broker

  • url: 指定了事件代理的地址。事件代理用于将所有对话事件流式传输到指定的位置。可以选择使用例如 RabbitMQ 或 Redis 作为事件代理,将对话事件发送到其它系统中。注释掉这部分的配置表示不使用事件代理。

参考文献

[0] 本文源码(rasa-v2024010101):https://github.com/ai408/nlp-engineering/tree/main/知识工程-对话系统/公众号代码/rasa-v2024010101

[1] Rasa 领域:https://rasa.com/docs/rasa/domain/

[2] Rasa 架构:https://rasa.com/docs/rasa/arch-overview/#!

[3] Rasa 模型配置:https://rasa.com/docs/rasa/model-configuration/

[4] Rasa 动作:https://rasa.com/docs/rasa/actions/

[5] Rasa 评估:https://rasa.com/docs/rasa/markers/

这篇关于Rasa初始化聊天机器人的配置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/562116

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤

《SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤》本文主要介绍了SpringBoot+MyBatis-Flex配置ProxySQL的实现步骤,文中通过示例代码介绍的非常详... 目录 目标 步骤 1:确保 ProxySQL 和 mysql 主从同步已正确配置ProxySQL 的

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

VScode连接远程Linux服务器环境配置图文教程

《VScode连接远程Linux服务器环境配置图文教程》:本文主要介绍如何安装和配置VSCode,包括安装步骤、环境配置(如汉化包、远程SSH连接)、语言包安装(如C/C++插件)等,文中给出了详... 目录一、安装vscode二、环境配置1.中文汉化包2.安装remote-ssh,用于远程连接2.1安装2

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构