信号量机制:原语PV操作的实现|源代码和解释

2024-01-01 23:44

本文主要是介绍信号量机制:原语PV操作的实现|源代码和解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

信号量机制

**目的:**实现互斥访问共享资源,实现进程同步。

一共3个操作

  1. 初始化
  2. P原语
  3. V原语

类型:

  1. 整型信号量:只包含临界资源数量。当资源不足的时候会自旋,会发生忙等,违背“让权等待”
  2. 记录型信号量:包含等待队列等信息。当资源不足的时候,会进入等待队列。

单词解释: 源于荷兰语
P-V原语操作
P = plantinga = Probeer(’try’)=尝试
V= Verhoog = increment = 增加1

整型信号量

了解即可

加锁确保原子操作
wait(S)原语:P操作,上锁+检查,避免了异步并发导致的死锁的问题。
signal(S)原语:V操作 上锁+检查

伪代码实现:

// 初始化,共享资源(临界资源)的数量
int S = 1;// P操作
void wait(int S) lock();     //加锁  while (S <= 0); ///< 如果s<0,会自旋,忙等S = S + 1;unlock();    //解锁  
}
// V操作
void signal(int S) {lock();//加锁S = S + 1;unlock();//解锁
}
/**********************************/
// 进程访问访问临界资源
wait(S);	// 进入临界区
访问临界资源;  //  临界区
signal(S);  // 退出临界区

为了解决“自旋”问题,引入等待队列。

记录型信号量的原理

引用维基百科解释 Semaphore_(programming)

A simple way to understand wait § and signal (V) operations is:
wait: Decrements the value of semaphore variable by 1. If the new value of the semaphore variable is negative, the process executing wait is blocked (i.e., added to the semaphore’s queue). Otherwise, the process continues execution, having used a unit of the resource.
signal: Increments the value of semaphore variable by 1. After the increment, if the pre-increment value was negative (meaning there are processes waiting for a resource), it transfers a blocked process from the semaphore’s waiting queue to the ready queue.

这是阿里云给出的步骤,与原版一致

P (S):
① reduce the semaphore s value by 1, that is, S = S-1;
② If S> = 0, the process continues to run; otherwise, the process is set to the waiting status and is discharged into the waiting queue.
V (s):
① Add 1 to the semaphore s value, that is, S = S + 1;
② If S> 0, the process continues; otherwise, the first process in the queue is released waiting for the semaphore.

翻译过来
P原语操作:
sem减1;
若sem减1后仍大于或等于0,则P原语返回,该进程继续执行;
若sem减1后小于0,则该进程被阻塞后进入与该信号相对应的队列中,然后转进程调度。

V原语操作:
sem加1;
若相加结果大于0,V原语停止执行,该进程返回调用处,继续执行;
若相加结果小于或等于0,则从该信号的等待队列中唤醒一个等待进程,然后再返回原进程继续执行或转进程调度。

总的来说,就是先修改信号量,然后再检查。

但是:
在信号量的实现中,通常的做法是首先检查信号量的状态,然后根据这个状态来决定是否减少信号量的值。这是为了确保只有在资源确实可用的情况下,线程才会减少信号量的值并进入临界区。在资源不可用时,线程应该等待,直到资源变得可用。

然而,在通过添加互斥锁的前提下,两者的实现一致



记录型信号量的实现

下面与原版保持一致

PV操作的c语言实现

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>/// 定义信号量,包含其他信息。
typedef struct {int value;   ///<  信号量的值,临界资源数量pthread_mutex_t mutex; ///< 互斥锁,用于原语操作/// 条件变量实现了等待队列pthread_cond_t cond; ///< 条件变量,下面有详解
} semaphore;/// 初始化信号量
void semaphore_init(semaphore *s, int value) {s->value = value;pthread_mutex_init(&s->mutex, NULL);pthread_cond_init(&s->cond, NULL);
}/// P操作wait(S)
void P(semaphore *s) {pthread_mutex_lock(&s->mutex); ///< 加锁s->value--;/// 先判断的话是<=,后判断是<while (s->value < 0) {pthread_cond_wait(&s->cond, &s->mutex);	///< 进程进入等待队列}pthread_mutex_unlock(&s->mutex); ///< 释放锁
}/// S操作signal(S)
void V(semaphore *s) {pthread_mutex_lock(&s->mutex); ///< 加锁s->value++;///< 如果等待队列中存在进程,进行唤醒,让它去使用临界资源if (s->value <= 0){ ///< 其实可以不加判断,pthread_cond_signal函数中包含判断pthread_cond_signal(&s->cond);  ///< 唤醒等待列中的进程}pthread_mutex_unlock(&s->mutex);///< 释放锁
}/// 测试函数
void *thread_function(void *arg) {semaphore *s = (semaphore *)arg;printf("Thread %ld: Waitling to enter critical section...\n", pthread_self());P(s);printf("Thread %ld: Entered critical section.\n", pthread_self());sleep(1);  // 模拟访问临界资源printf("Thread %ld: Exiting critical section.\n", pthread_self());V(s);return NULL;
}int main() {pthread_t t1, t2;semaphore sem;sephore_init(&sem, 1);pthread_create(&t1, NULL, thread_function, &sem);pthread_create(&t2, NULL, thread_function, &sem);pthread_join(t1, NULL);pthread_join(t2, NULL);return 0;
}

条件变量(cond)的作用可以通过一个现实生活中的比喻来解释,让我们以餐厅里的顾客和服务员的互动为例:

想象你在一家餐厅里等待你的食物。餐厅里有很多桌子,每个桌子上都有一个按钮,当你按下这个按钮时,就表示你的食物准备好了。在这个比喻中,每个桌子上的按钮就像一个条件变量。

  1. 等待条件变量(pthread_cond_wait:你(一个线程)到达餐厅并下了订单。然后,你等待食物准备好。在这个时候,你不会一直盯着服务员(忙等),而是会做一些其他事情,比如聊天或看手机。这个等待过程就像是线程在条件变量上的等待。你知道,直到你的食物准备好(条件发生变化),你都不需要做任何事。
  2. 通知条件变量(pthread_cond_signal:当厨师准备好你的食物后,服务员(另一个线程)会按下你桌子上的按钮。这个动作就像是在条件变量上发送信号。按下按钮后,你知道你的食物已经准备好了,你可以停止等待,开始吃饭。
  3. 互斥锁(pthread_mutex_t:为了保证订单不会混乱(避免数据竞争),每个订单都是在一种互斥的方式下处理的。这就像是每个服务员在处理一个订单时都拿着一个特定的笔(互斥锁),该订单只能由携带该笔的服务员处理,且这个笔一次只能由一个服务员使用(互斥)。当服务员处理完订单后,他们会放下笔,让其他服务员可以使用(释放锁)。

在这个比喻中,你等待的过程是非活跃的,不会占用资源(如不会一直盯着服务员)。这正是条件变量在多线程编程中的作用:允许线程在某些条件尚未满足时,以非忙等的方式等待,从而提高资源的利用效率和程序的响应性。当条件满足(比如食物准备好了),通过发送信号的方式通知等待的线程,允许它们继续执行。

这篇关于信号量机制:原语PV操作的实现|源代码和解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560817

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

mysql表操作与查询功能详解

《mysql表操作与查询功能详解》本文系统讲解MySQL表操作与查询,涵盖创建、修改、复制表语法,基本查询结构及WHERE、GROUPBY等子句,本文结合实例代码给大家介绍的非常详细,感兴趣的朋友跟随... 目录01.表的操作1.1表操作概览1.2创建表1.3修改表1.4复制表02.基本查询操作2.1 SE

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的