oCPC实践录 | 目标ROI的出价与转化回传调控算法

2024-01-01 14:28

本文主要是介绍oCPC实践录 | 目标ROI的出价与转化回传调控算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇文章我们聊聊广告主在oCPC下,怎么调控自己的出价或者回传转化优化自己的ROI。

ROI是广告主最关心的指标了,根据oCPC出价的基本原理ocpc_bid = pcvr * given_cpa * k, 广告主在整个出价中有两个可以控制的变量来影响出价,一个是直接的given_cpa,另一个是通过回传转化进而影响pcvr。

在oCPC实践录 | oCPC转化的设计、选择、归因与成本设置(4)中我们聊过,调整出价和调整回传是不等价的,不在这里赘述了。

ROI我们先定义一下:ROI=变现收入/广告花费,当ROI>1时毛利是正的,赚钱;当ROI<1时毛利是负的,亏钱。现在广告主有一个目标ROI,我们定义为target_ROI。

广告主可以通过调整出价或者转化影响出价,进而决定最终的ROI。做这个控制有个非常重要前提假设:调高出价(或转化率)ROI下降,调低出价(或转化率)ROI上升。这个假设往往是不能够严格保证的,因为调高出价有可能会买到高价值的流量,ROI不一定会下降,反之调低出价有可能会失去高价值流量,ROI不一定会上升。类似的逻辑我们在大厂广告算法专家:oCPC产品策略设计与投放实践(下)中也提到过。

现在正常的平台都会开放一个marketing API接口,供广告主自动化操作广告账户,包含广告的出价。因此,借助于这个工具,广告主可以做实时的ROI控制。

我们可以实时预估或者计算广告的真实ROI数据real_ROI,又有一个目标ROI即target_ROI,那一个很简单的思路就是无模型控制算法PID了,这里的无模型是指不去探究系统运行的机理,直接根据real_ROI和target_ROI的偏差调整出价,使得real_ROI=target_ROI,具体的算法逻辑在oCPC实践录 | 随你千变万化,oCPC PID控制(1),oCPC实践录 | 随你千变万化,oCPC PID控制(2),oCPC实践录 | 随你千变万化,oCPC PID控制(3)中有介绍过,不再赘述。

有聪明的小伙伴就发现一个问题,平台侧不是有个k值吗?他们也在控制出价,也会影响到ROI,那怎么办呢?有两个方法:

第一个方法是广告主侧的ROI控制与平台侧的成本控制,都把对方看成是一种系统干扰。直白说就是:不考虑对方的作用。

第二个方法是广告主侧的ROI控制与平台侧的成本控制分离解耦,这就需要探究系统的运行机理,使用基于模型的控制算法。系统的运行机理是一个转化的真实变现价值我们是知道的,除以target_ROI就应该是转化出价了,因此广告主直接计算平均每个转化的变现价值/除以target_ROI,将其设置为given_CPA即可,剩下的事情就是平台侧的成本控制保证real_cpa=given_cpa, 两者是解耦的。这就非常依赖平台侧的成本控制了。

(二)

有一些广告主是通过代理投放广告的,出价是通过代理控制的。所以可以通过调整转化回传来影响成本控制和ROI了。

第一个思路仍然是无模型的控制算法(PID),直接根据real_ROI和target_ROI的偏差调整回传,使得real_ROI=target_ROI,同样,会面临预估与调整出价一样的问题,不再赘述。

另一个思路是有模型的控制算法。从回传侧看系统的运行机理时,ROI等于一个转化的变现价值除以given_cpa,因此说只有转化价值累积超过given_cpa * target_ROI时才应该回传一个转化,点到为止了哈。

(三)

之前笔者做ROI产品时发现存在严重掉量的问题,当时没有分析到原因,直到看到有做目标ROI的回传时,才意识到平台侧ROI产品的一些隐忧。之前ROI产品的设计都是针对每个流量下的用户价值进行调价,但有些广告主是将多个用户累积的价值当成一个转化回传的。如果按照原来的思路将每个用户(或者转化用户的价值)的价值都进行回传,这个值会很小,会严重影响用户LTV的建模,进而影响出价和量级。

这篇关于oCPC实践录 | 目标ROI的出价与转化回传调控算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559529

相关文章

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时