Exploring Impact of COVID-19 on Travel Behavior

2024-01-01 02:12

本文主要是介绍Exploring Impact of COVID-19 on Travel Behavior,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是我们发表在Networks and Spatial Economics 期刊上的一篇论文,论文做的是新冠肺炎疫情对城市机动化出行行为的影响的内容。由于期间经历了重投等一些过程,因此见刊时间比较晚,工作其实在疫情期间就投出去了。文章对于新冠肺炎的一些交通策略支撑当然已经有些out of date了,但是文章的方法论对于以下领域还是有启发的。特殊事件对交通系统影响的量化评估。 新冠肺炎疫情无疑是一种强力的特殊事件,因此该文章实际上也可以被修改为其他任何一种特殊事件,该方法论可以被应用于任何一种特殊事件对交通系统的影响的量化分析。

该文章与 Understanding travel behavior adjustment under COVID-19 实际上是我们针对疫情影响下的行为分析做的两部分工作,两部分工作刚好形成一个系列。Exploring Impact of COVID-19 on Travel Behavior工作主要是从宏观和中观交通系统的角度出发分析特殊事件对交通系统的影响, Understanding travel behavior adjustment under COVID-19 主要从微观行为的角度出发分析特殊事件对交通系统的影响。

Yao, W., Hu, Y., Bai, C. et al. Exploring Impact of COVID-19 on Travel Behavior. Netw Spat Econ (2023). https://doi.org/10.1007/s11067-023-09610-2

Yao, W., Yu, J., Yang, Y., Chen, N., Jin, S., Hu, Y., Bai, C., Understanding travel behavior adjustment under COVID-19, Communications in Transportation Research, https://doi.org/10.1016/j.commtr.2022.100068.

文章概述

本文将新冠肺炎疫情发展阶段划分为四个阶段,分别是疫情前的对照阶段、复工复产初始阶段、全面复工复产阶段和后疫情时代。然后利用车辆画像的方法将路网上的车辆划分为本地化运营车辆、非本地化运营车辆、网约出租车辆。关于车辆画像可以详见我们发表的另一篇论文。在上述两个准备步骤完成后,首先从宏观层面来分析疫情发展不同阶段的交通状态。基于车牌识别数据提取出流量(被检测频次)、在运车辆数、出行强度、车辆每日平均的出行时间和出行距离、出行分布(城市栅格出行频次的变异系数)。利用这些宏观交通状态指标来分析疫情发展不同阶段路网交通状态的差异,以及各个类别车辆的出行行为差异。这部分分析实际上是建立指标库来监测交通状态。
然后对于各类别车辆分别进行分析,这部分分析我称之为中观分析,即针对某个群体的分析。对于非本地化运营车辆,主要是分析各个省份的车辆与义乌之间的联系,这可以反应出区域间的沟通强弱。此外,还对非本地化运营车辆在义乌市的出行分布进行了分析。对于本地化运营车辆,对起讫点分布、出行分布、首末次被检测时间分布进行了细致刻画。
基于上述分析得到新冠肺炎疫情对城市机动化出行行为的影响的完整分析内容,实际上这部分工作也可以作为一份完整的分析报告。

在之前我们提到,我们这部分工作主要是宏观和中观层面的分析,宏观在这边指的是利用宏观指标对整体交通状态和各个群体宏观状态的分析。中观主要指的是对各个群体的行为进行更为细致的分析。自然而然想到,还缺少了一块微观分析,微观分析详见: Understanding travel behavior adjustment under COVID-19 ,通过对出行者时空轨迹进行刻画和分析,来探究疫情对微观行为的影响。这两篇文章组合在一起,实现了宏中微观的分析。

数据

这篇文章的数据量是较大的,分析的主要难度和工作量其实也是对这样比较大的数据量进行分析。我们用了4个阶段,每个阶段是两周,即共4*14=56天的车牌识别数据进行分析。具体的方法论实际上不难。

方法论

本文的方法论实际上是比较简单的,但是对于基于车牌识别数据提取交通状态指标这个方面而言,我们的工作还是比较全面的。

  1. 方差分析。方差分析主要用来分析不同阶段,其交通状态是否存在显著性的差异。
  2. 谱聚类。聚类算法主要对本地化运营车辆的起讫点进行聚类分析,得到本地化运营车辆的出行模式。
  3. 基于车牌识别数据的交通状态指标定义。我们基于车牌识别数据定义了很多交通状态指标,这些指标的计算方式详见论文。

参考文献

欢迎引用。

Yao, W., Hu, Y., Bai, C. et al. Exploring Impact of COVID-19 on Travel Behavior. Netw Spat Econ (2023). https://doi.org/10.1007/s11067-023-09610-2
链接是:https://link.springer.com/article/10.1007/s11067-023-09610-2#citeas

Yao, W., Yu, J., Yang, Y., Chen, N., Jin, S., Hu, Y., Bai, C., Understanding travel behavior adjustment under COVID-19, Communications in Transportation Research, https://doi.org/10.1016/j.commtr.2022.100068.
链接是:https://www.sciencedirect.com/science/article/pii/S277242472200018X?via%3Dihub

这篇关于Exploring Impact of COVID-19 on Travel Behavior的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557892

相关文章

react笔记 8-19 事件对象、获取dom元素、双向绑定

1、事件对象event 通过事件的event对象获取它的dom元素 run=(event)=>{event.target.style="background:yellowgreen" //event的父级为他本身event.target.getAttribute("aid") //这样便获取到了它的自定义属性aid}render() {return (<div><h2>{

QT Travel

Code Resource: https://github.com/MoreYoungGavin/QT_Travel.git What is QT? QT is a cross-platform application development framework for desktop,embedded and mobile. What need install QT before? Yo

系统架构师考试学习笔记第三篇——架构设计高级知识(19)嵌入式系统架构设计理论与实践

本章考点:         第19课时主要学习嵌入式系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分)。在历年考试中,案例题对该部分内容都有固定考查,综合知识选择题目中有固定分值的考查。本课时内容侧重于对知识点的记忆、理解和应用,按照以往的出题规律,嵌入式系统架构设计基础知识点基本来源于教材内。本课时知识架构如图19.1所示。 一、嵌入式系统发展历程

C++笔记19•数据结构:红黑树(RBTree)•

红黑树 1.简介:         红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。 当搜索二叉树退化为单支树时,搜索效率极低,为了使搜索效率高,建立平衡搜索二叉树就需要"平衡树"来解决。上一篇博客介绍了AVL树,这

张飞硬件11~19-电容篇笔记

电容作用 作为源,对后级电路提供能量,对源进行充电。简单讲就是放电和充电。在电路设计中,源往往与负载相隔很远,增加电容就可以起到稳定作用。电容两端的电压不能激变,增加电容可以稳定电压。 电容可以类比为水坝,来让水保持一个供给量稳定。 提供能量时容量要偏大 滤波时容量要偏小 电容特性 电容的电场相吸,正负极电子增多,电场的形成就越快越强大。 相等电量(q)电容越大,则电压值

【C++学习笔记 19】C++中的对象生存周期

对象如何生存在栈上 在C++中,我们每次进入一个作用域时,我们就是在push栈帧。就像把书堆叠起来,将最新的书放在最上层,在这个作用域上创建变量就像在书中写内容,当作用域结束的时候,就把书拿走,此时每个基于栈的变量就结束了。 举个例子 #include <iostream>#include <string>class Entity{public:Entity(){std::cout <

设计模式 19 观察者模式

设计模式 19 创建型模式(5):工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式结构型模式(7):适配器模式、桥接模式、组合模式、装饰者模式、外观模式、享元模式、代理模式行为型模式(11):责任链模式、命令模式、解释器模式、迭代器模式、中介者模式、备忘录模式、观察者模式、状态模式、策略模式、模板方法模式、访问者模式 文章目录 设计模式 19观察者模式(Observer Pat

2015年1月19日 对阿里巴巴点赞VS拍砖

肖峰说: 1.建立了一个信用体系 2.当认为交易不安全的时候建立了支付宝(担保体系) 3.当认为创业非常危险的时候他提供了一个创业的榜样 马光远说: 1.中国有没有假货跟有没有阿里巴巴没有关系 2.对中国经济的拉动史无前例 3.买东西更便宜了 李银认为 1.阿里巴巴的信用污点至今无法让人放心 2.假货问题 3.安全问题 阿里巴

kubernetes视频教程笔记 (19)-代理模式的分类

一、VIP 和 Service 代理     在 Kubernetes 集群中,每个 Node 运行一个 kube-proxy 进程。 kube-proxy 负责为 Service 实现了一种 VIP(虚拟 IP)的形式,而不是 ExternalName 的形式。 在 Kubernetes v1.0 版本,代理完全在 userspace。在 Kubernetes v1.1 版本,新增了

区块链 Fisco bcos 智能合约(19)-区块链性能腾飞:基于DAG的并行交易执行引擎PTE

在区块链世界中,交易是组成事务的基本单元。 交易吞吐量很大程度上能限制或拓宽区块链业务的适用场景,愈高的吞吐量,意味着区块链能够支持愈广的适用范围和愈大的用户规模。 当前,反映交易吞吐量的TPS(Transaction per Second,每秒交易数量)是评估性能的热点指标。 为了提高TPS,业界提出了层出不穷的优化方案,殊途同归,各种优化手段的最终聚焦点,均是尽可能提高交易的并行处理能力