左神算法:二叉树的序列化和反序列化(Java版)

2023-12-31 20:08

本文主要是介绍左神算法:二叉树的序列化和反序列化(Java版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本题来自左神《程序员代码面试指南》“二叉树的序列化和反序列化”题目。

题目

二叉树被记录成文件的过程叫作二叉树的序列化,通过文件内容重建原来二叉树的过程叫作二叉树的反序列化。给定一棵二叉树的头节点head,已知二叉树节点值的类型为32 位整型。请设计一种二叉树序列化和反序列化的方案,并用代码实现。

题解

本文提供两套序列化和反序列化的实现,供读者参考。

方法一:通过先序遍历实现序列化和反序列化。

先介绍先序遍历下的序列化过程,首先假设序列化的结果字符串为str,初始时str=""。先序遍历二叉树,如果遇到null 节点,就在str 的末尾加上“#!”,“#”表示这个节点为空,节点值不存在,“!”表示一个值的结束;如果遇到不为空的节点,假设节点值为3,就在str 的末尾加上“3!”。比如,如图3-6 所示的二叉树。

根据上文的描述,先序遍历序列化,最后的结果字符串str 为:12!3!#!#!#!。为什么要在每个节点值的后面都要加上“!”呢?因为,如果不标记一个值的结束,那么最后产生的结果会有歧义,如图3-7 所示。
在这里插入图片描述
如果不在一个值结束时加入特殊字符,那么图3-6 和图3-7 的先序遍历序列化结果都是123###。也就是说,生成的字符串并不代表唯一的树。

先序遍历序列化的全部过程请参看如下代码中的serialByPre 方法。

	public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static String serialByPre(Node head) {if (head == null) {return "#!";}String res = head.value + "!";res += serialByPre(head.left);res += serialByPre(head.right);return res;}

在这里插入图片描述

public static Node reconByPreString(String preStr) {String[] values = preStr.split("!");Queue<String> queue = new LinkedList<String>();for (int i = 0; i != values.length; i++) {queue.offer(values[i]);}return reconPreOrder(queue);
}public static Node reconPreOrder(Queue<String> queue) {String value = queue.poll();if (value.equals("#")) {return null;}Node head = new Node(Integer.valueOf(value));head.left = reconPreOrder(queue);head.right = reconPreOrder(queue);return head;
}
方法二:通过层遍历实现序列化和反序列化。

先介绍层遍历下的序列化过程。首先假设序列化的结果字符串为str,初始时str=“空”。然后实现二叉树的按层遍历,具体方式是利用队列结构,这也是宽度遍历图的常见方式。例如,图3-8 所示的二叉树。
在这里插入图片描述
按层遍历图3-8 所示的二叉树,最后str="1!2!3!4!#!#!5!#!#!#!#! "。

层遍历序列化的全部过程请参看如下代码中的serialByLevel 方法。

public static String serialByLevel(Node head) {if (head == null) {return "#!";}String res = head.value + "!";Queue<Node> queue = new LinkedList<Node>();queue.offer(head);while (!queue.isEmpty()) {head = queue.poll();if (head.left != null) {res += head.left.value + "!";queue.offer(head.left);} else {res += "#!";}if (head.right != null) {res += head.right.value + "!";queue.offer(head.right);} else {res += "#!";}}return res;
}

先序遍历的反序列化其实就是重做先序遍历,遇到"#“就生成null 节点,结束生成后续子树的过程。与根据先序遍历的反序列化过程一样,根据层遍历的反序列化是重做层遍历,遇到”#"就生成null 节点,同时不把null 节点放到队列里即可。

层遍历反序列化的全部过程请参看如下代码中的 reconByLevelString 方法。

public static Node reconByLevelString(String levelStr) {String[] values = levelStr.split("!");int index = 0;Node head = generateNodeByString(values[index++]);Queue<Node> queue = new LinkedList<Node>();if (head != null) {queue.offer(head);}Node node = null;while (!queue.isEmpty()) {node = queue.poll();node.left = generateNodeByString(values[index++]);node.right = generateNodeByString(values[index++]);if (node.left != null) {queue.offer(node.left);}if (node.right != null) {queue.offer(node.right);}}return head;
}public static Node generateNodeByString(String val) {if (val.equals("#")) {return null;}return new Node(Integer.valueOf(val));
}

附:完整代码

package chapter_3_binarytreeproblem;import java.util.LinkedList;
import java.util.Queue;public class Problem_04_SerializeAndReconstructTree {public static class Node {public int value;public Node left;public Node right;public Node(int data) {this.value = data;}}public static String serialByPre(Node head) {if (head == null) {return "#!";}String res = head.value + "!";res += serialByPre(head.left);res += serialByPre(head.right);return res;}public static Node reconByPreString(String preStr) {String[] values = preStr.split("!");Queue<String> queue = new LinkedList<String>();for (int i = 0; i != values.length; i++) {queue.offer(values[i]);}return reconPreOrder(queue);}public static Node reconPreOrder(Queue<String> queue) {String value = queue.poll();if (value.equals("#")) {return null;}Node head = new Node(Integer.valueOf(value));head.left = reconPreOrder(queue);head.right = reconPreOrder(queue);return head;}public static String serialByLevel(Node head) {if (head == null) {return "#!";}String res = head.value + "!";Queue<Node> queue = new LinkedList<Node>();queue.offer(head);while (!queue.isEmpty()) {head = queue.poll();if (head.left != null) {res += head.left.value + "!";queue.offer(head.left);} else {res += "#!";}if (head.right != null) {res += head.right.value + "!";queue.offer(head.right);} else {res += "#!";}}return res;}public static Node reconByLevelString(String levelStr) {String[] values = levelStr.split("!");int index = 0;Node head = generateNodeByString(values[index++]);Queue<Node> queue = new LinkedList<Node>();if (head != null) {queue.offer(head);}Node node = null;while (!queue.isEmpty()) {node = queue.poll();node.left = generateNodeByString(values[index++]);node.right = generateNodeByString(values[index++]);if (node.left != null) {queue.offer(node.left);}if (node.right != null) {queue.offer(node.right);}}return head;}public static Node generateNodeByString(String val) {if (val.equals("#")) {return null;}return new Node(Integer.valueOf(val));}// for test -- print treepublic static void printTree(Node head) {System.out.println("Binary Tree:");printInOrder(head, 0, "H", 17);System.out.println();}public static void printInOrder(Node head, int height, String to, int len) {if (head == null) {return;}printInOrder(head.right, height + 1, "v", len);String val = to + head.value + to;int lenM = val.length();int lenL = (len - lenM) / 2;int lenR = len - lenM - lenL;val = getSpace(lenL) + val + getSpace(lenR);System.out.println(getSpace(height * len) + val);printInOrder(head.left, height + 1, "^", len);}public static String getSpace(int num) {String space = " ";StringBuffer buf = new StringBuffer("");for (int i = 0; i < num; i++) {buf.append(space);}return buf.toString();}public static void main(String[] args) {Node head = null;printTree(head);String pre = serialByPre(head);System.out.println("serialize tree by pre-order: " + pre);head = reconByPreString(pre);System.out.print("reconstruct tree by pre-order, ");printTree(head);String level = serialByLevel(head);System.out.println("serialize tree by level: " + level);head = reconByLevelString(level);System.out.print("reconstruct tree by level, ");printTree(head);System.out.println("====================================");head = new Node(1);printTree(head);pre = serialByPre(head);System.out.println("serialize tree by pre-order: " + pre);head = reconByPreString(pre);System.out.print("reconstruct tree by pre-order, ");printTree(head);level = serialByLevel(head);System.out.println("serialize tree by level: " + level);head = reconByLevelString(level);System.out.print("reconstruct tree by level, ");printTree(head);System.out.println("====================================");head = new Node(1);head.left = new Node(2);head.right = new Node(3);head.left.left = new Node(4);head.right.right = new Node(5);printTree(head);pre = serialByPre(head);System.out.println("serialize tree by pre-order: " + pre);head = reconByPreString(pre);System.out.print("reconstruct tree by pre-order, ");printTree(head);level = serialByLevel(head);System.out.println("serialize tree by level: " + level);head = reconByLevelString(level);System.out.print("reconstruct tree by level, ");printTree(head);System.out.println("====================================");head = new Node(100);head.left = new Node(21);head.left.left = new Node(37);head.right = new Node(-42);head.right.left = new Node(0);head.right.right = new Node(666);printTree(head);pre = serialByPre(head);System.out.println("serialize tree by pre-order: " + pre);head = reconByPreString(pre);System.out.print("reconstruct tree by pre-order, ");printTree(head);level = serialByLevel(head);System.out.println("serialize tree by level: " + level);head = reconByLevelString(level);System.out.print("reconstruct tree by level, ");printTree(head);System.out.println("====================================");}
}

这篇关于左神算法:二叉树的序列化和反序列化(Java版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557010

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第