codeforces 590B B. Chip 'n Dale Rescue Rangers(二分+计算几何)

2023-12-31 03:50

本文主要是介绍codeforces 590B B. Chip 'n Dale Rescue Rangers(二分+计算几何),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:

B. Chip 'n Dale Rescue Rangers

time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

A team of furry rescue rangers was sitting idle in their hollow tree when suddenly they received a signal of distress. In a few moments they were ready, and the dirigible of the rescue chipmunks hit the road.

We assume that the action takes place on a Cartesian plane. The headquarters of the rescuers is located at point (x1, y1), and the distress signal came from the point (x2, y2).

Due to Gadget's engineering talent, the rescuers' dirigible can instantly change its current velocity and direction of movement at any moment and as many times as needed. The only limitation is: the speed of the aircraft relative to the air can not exceed  meters per second.

Of course, Gadget is a true rescuer and wants to reach the destination as soon as possible. The matter is complicated by the fact that the wind is blowing in the air and it affects the movement of the dirigible. According to the weather forecast, the wind will be defined by the vector (vx, vy) for the nearest t seconds, and then will change to (wx, wy). These vectors give both the direction and velocity of the wind. Formally, if a dirigible is located at the point (x, y), while its own velocity relative to the air is equal to zero and the wind (ux, uy) is blowing, then after  seconds the new position of the dirigible will be .

Gadget is busy piloting the aircraft, so she asked Chip to calculate how long will it take them to reach the destination if they fly optimally. He coped with the task easily, but Dale is convinced that Chip has given the random value, aiming only not to lose the face in front of Gadget. Dale has asked you to find the right answer.

It is guaranteed that the speed of the wind at any moment of time is strictly less than the maximum possible speed of the airship relative to the air.

Input

The first line of the input contains four integers x1, y1, x2, y2 (|x1|,  |y1|,  |x2|,  |y2| ≤ 10 000) — the coordinates of the rescuers' headquarters and the point, where signal of the distress came from, respectively.

The second line contains two integers  and t (0 < v, t ≤ 1000), which are denoting the maximum speed of the chipmunk dirigible relative to the air and the moment of time when the wind changes according to the weather forecast, respectively.

Next follow one per line two pairs of integer (vx, vy) and (wx, wy), describing the wind for the first t seconds and the wind that will blow at all the remaining time, respectively. It is guaranteed that  and .

Output

Print a single real value — the minimum time the rescuers need to get to point (x2, y2). You answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
0 0 5 5
3 2
-1 -1
-1 0
output
3.729935587093555327
input
0 0 0 1000
100 1000
-50 0
50 0
output
11.547005383792516398

题意:

求点(x2,y2)到点(x1,y1)的最短时间,其中t时间内的风向是(vx,vy),其余时间是(wx,wy),对风的速度不超过v;


思路:

可以分开考虑,风改变的只是出发点的位置,然后以时间乘最大的速度为半径,可以得到这样的一个可达圆,看终点在不在圆内,二分最短时间就好;
解决的关键问题就是速度的大小和方向不定,看一点是否可达;

AC代码:

//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio>using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {char CH; bool F=false;for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {if(!p) { puts("0"); return; }while(p) stk[++ tp] = p%10, p/=10;while(tp) putchar(stk[tp--] + '0');putchar('\n');
}const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e14;
const int N=5e5+15;double fx,fy,px,py,v,t,vx,vy,wx,wy;
double ha(double x){return x*x;}
double getdis(double x,double y)
{return sqrt(ha(x)+ha(y));
}
int check(double x,int flag)
{double cx=vx*x,cy=vy*x;double dis=getdis(cx-px,cy-py);if(flag)dis-=v*t;if(dis<=v*x)return 1;return 0;
}
int main()
{scanf("%lf%lf%lf%lf",&fx,&fy,&px,&py);scanf("%lf%lf",&v,&t);scanf("%lf%lf%lf%lf",&vx,&vy,&wx,&wy);px-=fx,py-=fy;double cx,cy;cx=vx*t,cy=vy*t;double dis=getdis(cx-px,cy-py);if(dis<=t*v){double l=0,r=t;while(r-l>=1e-8){double mid=(l+r)/2;if(check(mid,0))r=mid;else l=mid;}printf("%.12lf",l);}else{px-=cx;py-=cy;vx=wx,vy=wy;double l=0,r=1000000000;while(r-l>1e-8){double mid=(l+r)/2;if(check(mid,1))r=mid;else l=mid;}printf("%.12lf",l+t);}return 0;
}

 

转载于:https://www.cnblogs.com/zhangchengc919/p/5566972.html

这篇关于codeforces 590B B. Chip 'n Dale Rescue Rangers(二分+计算几何)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/554864

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3104 二分答案

题意: n件湿度为num的衣服,每秒钟自己可以蒸发掉1个湿度。 然而如果使用了暖炉,每秒可以烧掉k个湿度,但不计算蒸发了。 现在问这么多的衣服,怎么烧事件最短。 解析: 二分答案咯。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <c

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c