yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)

2023-12-30 18:44

本文主要是介绍yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)_yolov8训练自己的数据集-CSDN博客在前几天,我们使用yolov8进行了部署,并在目标检测方向上进行自己数据集的训练与测试,今天我们训练下yolov8的图像分类,看看效果如何,同时使用resnet50也训练一个分类模型,看看哪个效果好!

图像分类是指将输入的图像自动分类为不同的类别。它是计算机视觉领域的一个重要应用,可以用于人脸识别、物体识别、场景分类等任务。

通常情况下,图像分类的流程如下:

  1. 收集和准备数据集:收集与任务相关的图像数据,并将其打上标签。
  2. 定义模型:选择一种适合于你的任务的深度学习模型,例如卷积神经网络(CNN)。
  3. 训练模型:使用收集到的数据集对模型进行训练,通过反向传播算法来更新模型参数,使其可以根据输入图像进行正确的分类。
  4. 评估模型性能:使用测试集对已经训练好的模型进行评估,比较模型预测结果与真实标签之间的差异,从而评估模型的性能。
  5. 使用模型进行预测:使用已经训练好的模型对新的图像进行分类预测。

在实际应用中,可以使用各种深度学习框架(例如 TensorFlow、PyTorch、Keras 等)来构建图像分类模型,并使用各种数据增强技术(例如旋转、缩放、裁剪等)来增加数据集的多样性和数量。

如果你想学习如何使用深度学习框架来构建图像分类模型,可以参考一些在线教程、书籍或者 MOOC。

一、yolov8图像分类

1.模型选型

下载yolov8分类模型。

分别使用模型进行测试:

yolov8n-cls效果:

yolov8m-cls效果:

总结:n效果不咋地,还是得使用m进行后续训练工作。 

2.数据集准备

皮肤癌检测_数据集-飞桨AI Studio星河社区

同目标检测,还是放在datasets下。

直接改成这个,省去分数据集操作。 

 3.训练

yolo classify train data=./datasets/skin-cancer-detection model=yolov8n-cls.pt epochs=100

测试:

yolo classify predict model=runs/classify/train4/weights/best.pt source='./datasets/skin-cancer-detection/train/nevus'

  

label: 

 pred:

总结:数据集比较小,yolov8效果不太好。

、resnet50图像分类

Resnet50 网络中包含了 49 个卷积层、一个全连接层。如图下图所示,Resnet50网络结构可以分成七个部分,第一部分不包含残差块,主要对输入进行卷积、正则化、激活函数、最大池化的计算。第二、三、四、五部分结构都包含了残差块,图 中的绿色图块不会改变残差块的尺寸,只用于改变残差块的维度。在 Resnet50 网 络 结 构 中 , 残 差 块 都 有 三 层 卷 积 , 那 网 络 总 共 有1+3×(3+4+6+3)=49个卷积层,加上最后的全连接层总共是 50 层,这也是Resnet50 名称的由来。网络的输入为 224×224×3,经过前五部分的卷积计算,输出为 7×7×2048,池化层会将其转化成一个特征向量,最后分类器会对这个特征向量进行计算并输出类别概率。

运行train.py即可。

train.py

import torch
from torchvision import datasets, models, transforms
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import timeimport numpy as np
import matplotlib.pyplot as plt
import os
from tqdm import tqdm# 一、建立数据集
# animals-6
#   --train
#       |--dog
#       |--cat
#       ...
#   --valid
#       |--dog
#       |--cat
#       ...
#   --test
#       |--dog
#       |--cat
#       ...
# 我的数据集中 train 中每个类别60张图片,valid 中每个类别 10 张图片,test 中每个类别几张到几十张不等,一共 6 个类别。# 二、数据增强
# 建好的数据集在输入网络之前先进行数据增强,包括随机 resize 裁剪到 256 x 256,随机旋转,随机水平翻转,中心裁剪到 224 x 224,转化成 Tensor,正规化等。
image_transforms = {'train': transforms.Compose([transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),transforms.RandomRotation(degrees=15),transforms.RandomHorizontalFlip(),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),'valid': transforms.Compose([transforms.Resize(size=256),transforms.CenterCrop(size=224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
}# 三、加载数据
# torchvision.transforms包DataLoader是 Pytorch 重要的特性,它们使得数据增加和加载数据变得非常简单。
# 使用 DataLoader 加载数据的时候就会将之前定义的数据 transform 就会应用的数据上了。
dataset = 'skin-cancer-detection'
train_directory = './skin-cancer-detection/train'
valid_directory = './skin-cancer-detection/val'batch_size = 32
num_classes = 9 #分类种类数
print(train_directory)
data = {'train': datasets.ImageFolder(root=train_directory, transform=image_transforms['train']),'valid': datasets.ImageFolder(root=valid_directory, transform=image_transforms['valid'])
}
print("训练集图片类别及其对应编号(种类名:编号):",data['train'].class_to_idx)
print("测试集图片类别及其对应编号:",data['valid'].class_to_idx)train_data_size = len(data['train'])
valid_data_size = len(data['valid'])train_data = DataLoader(data['train'], batch_size=batch_size, shuffle=True, num_workers=0)
valid_data = DataLoader(data['valid'], batch_size=batch_size, shuffle=True, num_workers=0)print("训练集图片数量:",train_data_size, "测试集图片数量:",valid_data_size)# 四、迁移学习
# 这里使用ResNet-50的预训练模型。
#resnet50 = models.resnet50(pretrained=True)
resnet50 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)# 在PyTorch中加载模型时,所有参数的‘requires_grad’字段默认设置为true。这意味着对参数值的每一次更改都将被存储,以便在用于训练的反向传播图中使用。
# 这增加了内存需求。由于预训练的模型中的大多数参数已经训练好了,因此将requires_grad字段重置为false。
for param in resnet50.parameters():param.requires_grad = False# 为了适应自己的数据集,将ResNet-50的最后一层替换为,将原来最后一个全连接层的输入喂给一个有256个输出单元的线性层,接着再连接ReLU层和Dropout层,然后是256 x 6的线性层,输出为6通道的softmax层。
fc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(nn.Linear(fc_inputs, 256),nn.ReLU(),nn.Dropout(0.4),nn.Linear(256, num_classes),nn.LogSoftmax(dim=1)
)# 用GPU进行训练。
resnet50 = resnet50.to('cuda:0')# 定义损失函数和优化器。
loss_func = nn.NLLLoss()
optimizer = optim.Adam(resnet50.parameters())# 五、训练
def train_and_valid(model, loss_function, optimizer, epochs=25):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")history = []best_acc = 0.0best_epoch = 0for epoch in range(epochs):epoch_start = time.time()print("Epoch: {}/{}".format(epoch+1, epochs))model.train()train_loss = 0.0train_acc = 0.0valid_loss = 0.0valid_acc = 0.0for i, (inputs, labels) in enumerate(tqdm(train_data)):inputs = inputs.to(device)labels = labels.to(device)#因为这里梯度是累加的,所以每次记得清零optimizer.zero_grad()outputs = model(inputs)loss = loss_function(outputs, labels)print("标签值:",labels)print("输出值:",outputs)loss.backward()optimizer.step()train_loss += loss.item() * inputs.size(0)ret, predictions = torch.max(outputs.data, 1)correct_counts = predictions.eq(labels.data.view_as(predictions))acc = torch.mean(correct_counts.type(torch.FloatTensor))train_acc += acc.item() * inputs.size(0)with torch.no_grad():model.eval()for j, (inputs, labels) in enumerate(tqdm(valid_data)):inputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)loss = loss_function(outputs, labels)valid_loss += loss.item() * inputs.size(0)ret, predictions = torch.max(outputs.data, 1)correct_counts = predictions.eq(labels.data.view_as(predictions))acc = torch.mean(correct_counts.type(torch.FloatTensor))valid_acc += acc.item() * inputs.size(0)avg_train_loss = train_loss/train_data_sizeavg_train_acc = train_acc/train_data_sizeavg_valid_loss = valid_loss/valid_data_sizeavg_valid_acc = valid_acc/valid_data_sizehistory.append([avg_train_loss, avg_valid_loss, avg_train_acc, avg_valid_acc])if best_acc < avg_valid_acc:best_acc = avg_valid_accbest_epoch = epoch + 1epoch_end = time.time()print("Epoch: {:03d}, Training: Loss: {:.4f}, Accuracy: {:.4f}%, \n\t\tValidation: Loss: {:.4f}, Accuracy: {:.4f}%, Time: {:.4f}s".format(epoch+1, avg_valid_loss, avg_train_acc*100, avg_valid_loss, avg_valid_acc*100, epoch_end-epoch_start))print("Best Accuracy for validation : {:.4f} at epoch {:03d}".format(best_acc, best_epoch))torch.save(model, 'models/'+dataset+'_model_'+str(epoch+1)+'.pt')return model, historynum_epochs = 100 #训练周期数
trained_model, history = train_and_valid(resnet50, loss_func, optimizer, num_epochs)
torch.save(history, 'models/'+dataset+'_history.pt')history = np.array(history)
plt.plot(history[:, 0:2])
plt.legend(['Tr Loss', 'Val Loss'])
plt.xlabel('Epoch Number')
plt.ylabel('Loss')
plt.ylim(0, 1)
plt.savefig(dataset+'_loss_curve.png')
plt.show()plt.plot(history[:, 2:4])
plt.legend(['Tr Accuracy', 'Val Accuracy'])
plt.xlabel('Epoch Number')
plt.ylabel('Accuracy')
plt.ylim(0, 1)
plt.savefig(dataset+'_accuracy_curve.png')
plt.show()

测试:图片名改下即可。

import torch
from torchvision import  models, transforms
import torch.nn as nn
import cv2
classes = ["1","2","3","4","5","6","7","8","9"] #识别种类名称(顺序要与训练时的数据导入编号顺序对应,可以使用datasets.ImageFolder().class_to_idx来查看)transf = transforms.ToTensor()
device = torch.device('cuda:0')
num_classes = 2
model_path = "models/skin-cancer-detection_model_3.pt"
image_input = cv2.imread("ISIC_0000019.jpg")
image_input = transf(image_input)
image_input = torch.unsqueeze(image_input,dim=0).cuda()
#搭建模型
resnet50 = models.resnet50(pretrained=True)
for param in resnet50.parameters():param.requires_grad = Falsefc_inputs = resnet50.fc.in_features
resnet50.fc = nn.Sequential(nn.Linear(fc_inputs, 256),nn.ReLU(),nn.Dropout(0.4),nn.Linear(256, num_classes),nn.LogSoftmax(dim=1)
)
resnet50 = torch.load(model_path)outputs = resnet50(image_input)
value,id =torch.max(outputs,1)
print(outputs,"\n","结果是:",classes[id])

这篇关于yolov8实战第四天——yolov8图像分类 ResNet50图像分类(保姆式教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/553693

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前