Python之自然语言处理库snowNLP

2023-12-30 09:04

本文主要是介绍Python之自然语言处理库snowNLP,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、介绍

SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典。注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode。

GitHub - isnowfy/snownlp: Python library for processing Chinese text

二、snowNLP操作详解

2.1 安装

pip install snownlp 

2.2 功能详解

1)中文分词(Character-Based Generative Model)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
print(s.words)

2)词性标注(TnT 3-gram 隐马)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
for i in s.tags: print(i) 

3)情感分析(朴素贝叶斯算法)

现在训练数据主要是买卖东西时的评价,所以对其他的一些可能效果不是很好。

情感分析的结果是一个0~1之间的数字,数字越大表示这句话越偏向于肯定的态度,数字越小表示越偏向于否定的态度。

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
print(s.sentiments)

 4)文本分类(Naiv eBayes)

模型训练(若是想要利用新训练的模型进行情感分析,可修改 snownlp/seg/__init__.py 里的data_path指向刚训练好的文件)

#coding:UTF-8from snownlp import sentimentif __name__ == "__main__":# 重新训练模型sentiment.train('./neg.txt', './pos.txt')# 保存好新训练的模型sentiment.save('sentiment.marshal')

5)转换成拼音(Trie树实现的最大匹配)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
print(s.pinyin)

6)繁体转简体(Trie树实现的最大匹配)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文學的海洋中,有一部名為《薄霧》的小說,它猶如一顆閃耀的明珠,讓人過目難忘。 這部作品講述了一段發生在上世紀初的跨越階級的愛情故事。 在這篇文學短評中,我們將探討這部小說所展現的情感與人性,以及它在文學史上的地位。'''s = SnowNLP(txt)
print(s.han)

7)提取文本关键词(TextRank算法)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
print(s.keywords(5))

8)提取文本摘要(TextRank算法)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
print(s.summary(5))

10)Tokenization(分割成句子)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPtxt = u'''在文学的海洋中,有一部名为《薄雾》的小说,它犹如一颗闪耀的明珠,让人过目难忘。这部作品讲述了一段发生在上世纪初的跨越阶级的爱情故事。在这篇文学短评中,我们将探讨这部小说所展现的情感与人性,以及它在文学史上的地位。'''s = SnowNLP(txt)
print(s.sentences)

 9)tf(词频),idf(逆文档频率:可以用于tf-idf关键词提取)

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPs = SnowNLP([[u'这篇', u'文章'],[u'那篇', u'论文'],[u'这个']])print("tf:")
print(s.tf)
print("\n")print("idf:")
print(s.idf)

11)文本相似(BM25)

1. 文本的相似度是通过上面的tf和idf来计算的,这里给出的也是词的相似度分析。

# -*- coding:utf-8 -*-
import sys
from snownlp import SnowNLPs = SnowNLP([[u'这篇', u'文章'],[u'那篇', u'论文'],[u'这个']])print(s.sim([u'文章']))

2. 用 sklearn库的句子相似度的计算方法,计算 TF 矩阵中两个向量的相似度,实际上就是求解两个向量夹角的余弦值:点乘积除以二者的模长,公式如下

cosθ=a·b/|a|*|b|

from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
from scipy.linalg import normdef tf_similarity(s1, s2):def add_space(s):return ' '.join(s)# 将字中间加入空格s1, s2 = add_space(s1), add_space(s2)# 转化为TF矩阵cv = CountVectorizer(tokenizer=lambda s: s.split())corpus = [s1, s2]vectors = cv.fit_transform(corpus).toarray()# 计算TF系数return np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1]))s1 = '我出生在中国'
s2 = '我生于中国'
print(tf_similarity(s1, s2))  # 结果:0.7302967433402214

2.3 情感分析源码解析

class Sentiment(object):def __init__(self):self.classifier = Bayes() # 使用的是Bayes的模型def save(self, fname, iszip=True):self.classifier.save(fname, iszip) # 保存最终的模型def load(self, fname=data_path, iszip=True):self.classifier.load(fname, iszip) # 加载贝叶斯模型# 分词以及去停用词的操作    def handle(self, doc):words = seg.seg(doc) # 分词words = normal.filter_stop(words) # 去停用词return words # 返回分词后的结果def train(self, neg_docs, pos_docs):data = []# 读入负样本for sent in neg_docs:data.append([self.handle(sent), 'neg'])# 读入正样本for sent in pos_docs:data.append([self.handle(sent), 'pos'])# 调用的是Bayes模型的训练方法self.classifier.train(data)def classify(self, sent):# 1、调用sentiment类中的handle方法# 2、调用Bayes类中的classify方法ret, prob = self.classifier.classify(self.handle(sent)) # 调用贝叶斯中的classify方法if ret == 'pos':return probreturn 1-probclass Sentiment(object):def __init__(self):self.classifier = Bayes() # 使用的是Bayes的模型def save(self, fname, iszip=True):self.classifier.save(fname, iszip) # 保存最终的模型def load(self, fname=data_path, iszip=True):self.classifier.load(fname, iszip) # 加载贝叶斯模型# 分词以及去停用词的操作    def handle(self, doc):words = seg.seg(doc) # 分词words = normal.filter_stop(words) # 去停用词return words # 返回分词后的结果def train(self, neg_docs, pos_docs):data = []# 读入负样本for sent in neg_docs:data.append([self.handle(sent), 'neg'])# 读入正样本for sent in pos_docs:data.append([self.handle(sent), 'pos'])# 调用的是Bayes模型的训练方法self.classifier.train(data)def classify(self, sent):# 1、调用sentiment类中的handle方法# 2、调用Bayes类中的classify方法ret, prob = self.classifier.classify(self.handle(sent)) # 调用贝叶斯中的classify方法if ret == 'pos':return probreturn 1-prob

从上述的代码中,classify函数和train函数是两个核心的函数,其中,train函数用于训练一个情感分类器,classify函数用于预测。在这两个函数中,都同时使用到的handle函数,handle函数的主要工作为对输入文本分词去停用词。

情感分类的基本模型是贝叶斯模型 Bayes,对于贝叶斯模型,这里就先介绍一下机器学习算法—朴素贝叶斯的公式,详细说明可查看 python版 朴素贝叶斯-基础 - 简书。对于有两个类别c1和c2的分类问题来说,其特征为w1,⋯,wn,特征之间是相互独立的,属于类别c1的贝叶斯模型的基本过程为:

其中: 

这篇关于Python之自然语言处理库snowNLP的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/552343

相关文章

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整