ET201控制板与按键板通信协议

2023-12-30 03:50

本文主要是介绍ET201控制板与按键板通信协议,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

通信方式:串口通信
数据格式:一位起始位,8位数据位,一位停止位
波特率: 9600
校验算法:CRC-16 (MODBUS), 具体算法代码见附录

控制板发送数据帧格式
在这里插入图片描述

帧头和帧尾:数据帧以0x9B开始,以0x9D结束。
长度:占一个字节,是 长度+命令字+数据+校验位 的字节长度,数据长度最多为64字节。(不计算帧头和帧尾)
命令字:控制板向按键板发送的控制命令,如无操作,则该位为 0x00
数据:控制板向按键板发送的数据,如无数据,则该项为空,如果数据中包含0x09B或者0x9D,则在0x9B或0x9D前插入“(0x5C)“作为转义符(最多60字节)
校验位:CRC-16 校验结果。

控制板应答数据帧格式:
在这里插入图片描述

帧头和帧尾:数据帧以0x9B开始,以0x9D结束。
长度:占一个字节,是 长度+命令字+数据+校验位 的字节长度,数据长度最多为64字节。(不计算帧头和帧尾)
ID:按键板的ID值,固定为0x02
数据:按键板向控制板发送的数据,如无数据,则该项为空,如果数据中包含0x09B或者0x9D,则在0x9B或0x9D前插入“(0x5C)“作为转义符(最多60字节)
校验位:CRC-16 校验结果。

命令:

1.控制板向按键板获取键值命令 0x11

控制板发送:
0x9B+ 04(长度)+0x11(命令字)+0x7C+0xC3 +0x9D
按键板应答:
0x9B + 数据长度+ 0x02(ID) + 键值(1Byte) + 校验位(2Byte) +0x9D
如果当前没有按键按下,则键值为0x00,
向上键键值: 0x01
向下键键值: 0x02
1键键值: 0x04
2键键值: 0x08
3键键值: 0x10
M键键值: 0x20
A键键值: 0x40
M+3键值: 0x12

2.控制板控制按键板显示指定字符命令0x12

控制板发送:
0x9B + 0x12(命令字) + 数码管断码值(3Byte) + 校验位(2Byte) + 0x9D
按键不需要应答。

3.控制板控制按键板关断控制板的电源命令0x13

控制板发送:
0x9B + 0x04(长度) + 0x13(命令字) + 0xBD + 0x42 +0x9D
按键板不需要应答。

4.控制板控制按键板开启蜂鸣器命令 0x14

控制板发送:
0x9B + 0x04(长度) + 0x14 + 0x7F + 0x03 + 0x9D
按键板不需要应答

5.控制板控制按键板关闭蜂鸣器命令 0x15

控制板发送:
0x9B + 0x04(长度) + 0x15 + 0xBF + 0xC2 + 0x9D
按键板不需要应答

附录

CRC-16单片机查表算法:

static const UCHAR aucCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40 };
static const UCHAR aucCRCLo[] = {
0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,
0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D,0x1C,0xDC,
0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
0x41, 0x81, 0x80, 0x40
};

//*pucFrame 为待校验数据首地址,usLen为待校验数据长度。返回值为校验结果。
USHORT usMBCRC16( UCHAR * pucFrame, USHORT usLen )
{UCHAR ucCRCHi = 0xFF;UCHAR ucCRCLo = 0xFF;int iIndex;while( usLen-- ){iIndex = ucCRCLo ^ *( pucFrame++ );ucCRCLo = ( UCHAR )( ucCRCHi ^ aucCRCHi[iIndex] );ucCRCHi = aucCRCLo[iIndex];}return ( USHORT )( ucCRCHi << 8 | ucCRCLo );
}

这篇关于ET201控制板与按键板通信协议的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/551629

相关文章

独立按键单击检测(延时消抖+定时器扫描)

目录 独立按键简介 按键抖动 模块接线 延时消抖 Key.h Key.c 定时器扫描按键代码 Key.h Key.c main.c 思考  MultiButton按键驱动 独立按键简介 ​ 轻触按键相当于一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通与断开。  ​ 按键抖动 由于按键内部使用的是机

3.门锁_STM32_矩阵按键设备实现

概述 需求来源: 门锁肯定是要输入密码,这个门锁提供了两个输入密码的方式:一个是蓝牙输入,一个是按键输入。对于按键输入,采用矩阵按键来实现。矩阵按键是为了模拟触摸屏的按键输入,后续如果项目结束前还有时间就更新为触摸屏按键输入。 矩阵按键开发整体思路: 由于矩阵按键就是GPIO的控制,所以不进行芯片和设备的分层编写,控制写在同一个文件中,最终向应用层提供一个接口。 代码层级关系:

STM32F4按键状态机--单击、双击、长按

STM32F4按键状态机--单击、双击、长按 一、状态机的三要素二、使用状态机原因2.1资源占用方面2.2 执行效率方面:2.3 按键抖动方面: 三、状态机实现3.1 状态机分析3.1 程序实现 百度解析的状态机概念如下 状态机由状态寄存器和组合逻辑电路构成,能够根据控制信号按照预先设定的状态进行状态转移,是协调相关信号动作、完成特定操作的控制中心。有限状态机简写为FSM(

JS触发按键事件

<script type="text/javascript" language=JavaScript charset="UTF-8">document.onkeydown=function(event){var e = event || window.event || arguments.callee.caller.arguments[0];if(e && e.keyCode==27){ // 按

学习记录-Qt按键单击后延迟一段时间触发下一个函数执行

<span style="font-family: Arial, Helvetica, sans-serif;">QTimer::singleShot(1000, this, SLOT(on_pushButton_pcba_readfilename_clicked()));</span>项目中,需要按键单击后发送一条指令,等待一段时间后在发另一条指令,看文档发现使用如上方式可以实现

搭建SpringBoot+ Netty + WebSocket 通信协议框架

运用场景:与机器设备进行通讯或者其他场景; pom文件就不上传了,直接上代码,网上都可以找的到 主要是 SpringBoot 和 Netty 的依赖 1.配置类 @Component@ConfigurationProperties(prefix = "ws")public class WebSocketConfig {private int port;private String host

linux--按键重映射问题

第一:按键重映射可以解决的问题是 ①键盘的某些按键不灵敏,需要把这个坏键重新映射到好的按键上。比如:如果Up按键不灵敏,把Esc按键重新映射成Up按键,这样就可以使用Esc按键代替Up按键。 ②经常使用的按键比较远,需要把常用的较远的按键重映射到距离手指比较近的地方,这样方便使用。 -------------------------------------------------

gt9xx系列------实现实体按键的unpin解锁

由于gt的虚拟按键的上报不是上报坐标而是类似电源按键的实体按键所以需要修改之前的unpin步骤 if ((( rawEvent->code==139)&&(rawEvent->value==1))||((rawEvent->code==158)&&(rawEvent->value==1)))  //有按键按下 { if( unpinkey[0]==0)     //第一次数组0肯定为空

嵌入式开发与应用按键外部中断实验二

一、实验目的 1. 通过实验掌握中断式键盘控制与设计方法; 2. 熟悉编写中断服务程序; 3. 掌握中断系统相关知识,掌握外部中断应用方法和处理过程; 4. 掌握实验处理器中断处理的软件编程方法; 5. 从按键程序的设计对系统的编程进行深入了解,与单片机裸机编程进行区分; 6. 掌握基于固件库编程控制GPIO端口的输出,进而控制LED灯的显示状态。 二、实验内容   根据实验要

串行通信协议——UART

概述 UART(Universal Asynchronous Receiver/Transmitter,通用异步收发传输器)是一种广泛使用的串行通信协议,用于实现计算机与外设之间或两个计算机之间的数据传输。UART通信以异步方式进行,这意味着发送和接收设备不需要共享时钟信号。在嵌入式系统、工业控制、消费电子产品等领域,UART通信协议得到了广泛应用。 UART通信原理 UART通信基于RS-